

FINAL REPORT FOR DUAL SUMP-PUMP CONTROLLER

BY:

ROHAN BHAVSAR, NBCC Moncton ELECTRONICS ENGINEERING TECHNOLOGY (INDUSTRIAL)

SUBMITTED: MAY 25, 2021

Electronics Engineering Technology (Industrial)

Preliminary Report for Dual Sump-Pump Controller

Prepared by: Rohan Bhavsar Advisor: Ronald Broad

May 25, 2021, EET

Abstract

The Dual Sump-Pump Controller was designed to solve an issue brought up by countryside homeowners where water is collected from rain and melting snow in the sump, which is in the basement. A pump that is fixed inside the sump sends this collected water to the water reservoir. However, specific faults in a pump such as objects stuck in the shaft, mechanical float switch error, and continuous operation fail. As a result, the whole basement flooded with water. In the solution, Dual Sump-Pump Controller controls and monitor two pumps according to water levels (LOW, HIGH, and CRITICAL HIGH) and protect each pump from overload and underload situations. In addition, this device informs the user about the critical condition (where the basement is about to start flooding) by a buzzer. Also, three fuses were used in the circuit, which provides extra protection.

Furthermore, on the front side of the panel, four LED indicators (ONLINE, PUMP A, PUMP B, ANNUNCIATOR) and three push button switches (TEST A, TEST B, RESET) exists, which make this device more user friendly. After installment, the user can connect the pump and adjust current tripping points according to the steps mentioned in this report.

Table of Contents

Table of Figures	v
1 Introduction	1
2.0 Functional Overview	1
2.1 Fuse	2
2.2 Water Levels	2
2.3 Reset (I0.3)	2
2.4 Current Sensors (10.4, 10.5, 10.6, 10.7)	3
2.5 Status Indicators (Q0.0, Q0.1)	3
2.6 System Enable Indicator (Q0.2)	4
2.7 Test Pump (A & B)	4
2.8 Contactor (A & B)	4
2.9 Annunciator (Q0.5)	4
3.Technical Description	5
Physical and user interaction description	5
Electrical/Electronics description	6
Analysis or Software description	7
4. Testing and Results	8
5 Conclusion	10
6 References	10
Appendix A: Gantt Chart	12
Appendix B: Block Diagram	16
Appendix C: Wiring Diagram	
Appendix D: Parts List	20
Appendix E: Code	22
Appendix F: Design Calculations	29
Appendix G: Datasheets	
Fuse (MEQ20, MEQ10)	32
Push Button (GCX1104)	
Contactor (SC-E02-110VAC)	35
Annunciator (ECX2071-127R)	
Current Sensors (ACS150-CE-F)	
PLC (Siemens S7-200)	42
DIN Rail (DN-R35S1-2)	50

Fuse Block (EHM1DU)	
LED indicators (ECX1053-120, ECX1052-120)	
Terminal Block & Accessories	
Appendix H: Marking Sheets	
Appendix I: Marked Drawing	62

Table of Figures

Figure 1: Fuse (20A)	2
Figure 2: Reset (push button)	2
Figure 3: Current sensors	3
Figure 4: LED status indicator	3
Figure 5: Enable indicator	4
Figure 6: Contactors	4
Figure 7: TEST PUMP A and B (pushbutton)	4
Figure 8: Annunciator	4
Figure 9: Dimension of Sump and water levels	5
Figure 10: Front side of the panel	5
Figure 11: STEP 7 Micro WIN 32 installed in Windows 98 O.S	8
Figure 12: Current under normal load	8
Figure 13: Hairdryer measurement	9
Figure 14: 1000-liter water tank	9
Figure 15: Critical situation (Annunciator ON)	9

1 Introduction

This project builds to solve an issue facing by many people having a sump pump in their house(basement). The pump available in the market is not working effectively. Sometimes the basement is flooded with water and, in some cases, a pump suffering from dry run conditions. This project provides a solution to these situations by controlling two pumps connected to it according to water levels (LOW-level, HIGH level, CRITICAL HIGH level). Also, there is an indicator for each pump that shows ongoing operation (ON, OFF, FAULT) on the pump. If the user wants to test whether the pump is working, testing for each pump is available by simply pushing the push button. An annunciator [1] informs users in a critical situation (if water remains above the CRITICAL HIGH level for few minutes). These are the advantages that make this project different from one existing in the market. There is no product available in the market that protects the device from under load and overload, and it is possible with Dual sump-pump Controller. Writing this report aims to sufficiently inform the user of all functions, operations, and troubleshooting techniques. In-depth Details such as block diagrams, wiring diagrams, and datasheets will be helpful to the technician who wants to troubleshoot the fault. In other words, this report works as a user manual for a Dual sump-pump controller.

2.0 Functional Overview

Detailed functionality of the Dual sump-pump Controller has been covered in this content. First, as described in *Appendix B: Block Diagram*. PLC is in the center of the diagram, which has an input supply voltage of 120VAC. There are three safety fuses in this circuit. One of them (primary, 20A) protects the entire system. The remaining two fuses (secondary, 10A) protect individual pumps. Overall, this system monitors, protect, and controls two pumps connected to it according to water level and fault detected by current sensors. Two pushbutton switches connected to CONTACTOR A and CONTACTOR B named TEST PUMP A and TEST PUMP B, respectively. Which allows the users to check the pump is working or not in OFF mode as well.

2.1 Fuse

Fuse's job is to protect the System and part of the System from overload. There are three fuses used in this project. The first connected next to supply (120 VAC) is called primary fuse (*Figure 1: Fuse (20A)*), which protects the entire system, and the other two fuses before contactors (A & B) is known as secondary fuse which saves individual pump (A/B) system.

2.2 Water Levels

Figure 1: Fuse (20A)

In this project, water levels were created by simply connecting

conductive electrodes at a different height in the sump. There are three primary water levels: **LOW level**, **HIGH level**, and **CRITICAL HIGH level**. As mentioned in *Figure 10: Dimension of Sump and water levels* the LOW level at 4", the HIGH level at 20", and CRITICAL HIGH level at 23" height from the bottom of the sump. PLC using these water levels as input, and according to the program (ladder logic), turns on or off with the help of contractors. Apart from these levels, an electrode is connected at the bottom of the sump (named COMMON), 24 VDC from PLC.

The primary function of the LOW level is to protect pumps from dry run conditions. LOW level is an input for PLC, which acts as a stop switch (concept of stop switch) logic to pump A and pump B (See *Appendix E: Code*, network 5 & 13). When the water reaches below low level, both pumps will be turned off, and pumps would always be at some water level. A HIGH level will allow PLC to turn ON contactor A (pump A) with *2.5 Status Indicators (Q0.0, Q0.1)* (pump A status indicator). If water reaches a CRITICAL HIGH level, then PLC turns ON pump B and pump A (Pump A not ON by High level). At this level, both pumps forcing out water from the sump.

2.3 Reset (I0.3)

This input (Figure 2: Reset (push button)) introduced for two main reasons:

1. Once the annunciator starts emitting noise and flashing light, inform the user about a critical situation. The user is now well informed about

this situation, and if the user wants to stop the annunciator, press the ^{Figure 2: Reset (push button)} RESET button for 5 seconds.

 When current sensors detect fault (underload/overload), then PLC turns OFF that load (pump A or pump B), and 2.5 Status Indicators (Q0.0, Q0.1) start flashing (Fault mode). Now, the user wants to check whether the fault is apparent or not to make sure that they press the REST button for a moment.

2.4 Current Sensors (10.4, 10.5, 10.6, 10.7)

These sensors connected to the PLC input terminal and hot wire of load (pump A and pump B) pass through the hole on it as shown in (*Appendix C: Wiring Diagram*), and The working principle of these sensors is based on a current transformer (C.T.). These sensors (*Figure 3: Current sensors*) protect load connected across contactor from overload and underload by opening contactor terminals. The sensor works

Figure 3: Current sensors

only when the contactor is ON. These sensors' trip points would be adjustable (if in future user change pump). Inputs I0.4 and I0.5 of PLC save pump A (load connected across contactor A) from overload and underload, respectively. Also, Inputs I0.6 and I0.7 of PLC save pump B (load connected across contactor B) from overload and underload, respectively.

2.5 Status Indicators (Q0.0, Q0.1)

Figure 4: LED status indicator

Indicate the pump's current operation (or status), and it is attached to the front of the panel. Using single *LED indicators (ECX1053-120, ECX1052-120)*, this project saves multiple input terminals and a program line.

Yellow color LED light (has supply voltage 120 VAC) shows ongoing PUMP A and PUMP B operation. During OFF (*Figure 4: LED status*

indicator) mode, this status indicator stays off. However, during ON mode, light laminate with full lamination, and during FAULT (overload /underload), this indicator starts flashing [2].

2.6 System Enable Indicator (Q0.2)

When this indicator *(LED indicators (ECX1053-120, ECX1052-120)*) is ON (full illumination), it shows the System is Enable, and the input supply (120 VAC) is ok. It can be said that the System is Disable when this indicator is OFF (*Figure 5: Enable indicator*).

Figure 5: Enable indicator

2.7 Test Pump (A & B)

It allows the user to check the functionality of the pump manually

(without interfering with PLC
logic) at any time and situation by
simply pressing *Push Button*(GCX1104), as showing in *Figure 7: TEST PUMP A and B (pushbutton)*.
Also, help the user while replacing
the pump and setting current
tripping points on current sensors.

Figure 6: Contactors

Figure 7: TEST PUMP A and B (pushbutton)

2.8 Contactor (A & B)

This works as an interference device for PLC and pump. PLC controls (ON/OFF) pumps with the help of this contactor (*Figure 6: Contactors*).

2.9 Annunciator (Q0.5)

Figure 8: Annunciator

It informs the user about the critical situation (if the water stays above the necessary High level for more than 2 minutes) by flashing light and periodic buzzer (*Figure 8: Annunciator*).

3.Technical Description

Physical and user interaction description

It is a fully automatic controller which required the least amount of user interference. The regular

Figure 9: Front side of the panel

operation is performed according to water levels detected by PLC. The operation order could be more transparent by looking Figure 9: Front side of the panel, the COMMON electrode located at the bottom of the sump, 24V D.C. from PLC and LOW level fixed at around 4 inches of height from the bottom of the sump. The HIGH and CRITICAL HIGH levels were located about 20 inches and 24 inches, respectively. When the sump starts filling with water and reaches a HIGH level, it will turn on the PUMP A and its indicator if the input water force is more than PUMP A's

troughing capacity, the water level increases. Once it reaches the CRITICAL HIGH level, PUMP

B will be additionally joined to complete operation. In addition to this, if water goes above CRITICAL HIGH level or stays there for more than 2 minutes, the user will be notified by ANNUNCIATOR. When water starts decreasing below the HIGH level, PUMP B will be stopped, and PUMP A works standalone. Once this water level reaches below the LOW level, PUMP A will be destroyed, and there is some amount of water stays in the sump to protect pumps from dry-run conditions. There is a RESET button on the front side (Figure 9: Front side of the panel) of the board, which stops the annunciator (press for 5 seconds when it's ON) and reset

Figure 10: Dimension of Sump and water levels

the load (after clearing the fault, press it for a moment). TEST A and TEST B will allow users to check the pump's functionality and help users while replacing the pump.

Electrical/Electronics description

In this project, seven segments were used (located on the front panel), which works as user interference. Three of them are momentary push button (Appendix G: Datasheets), where 2 TEST button connects 120VAC supply and pump (there is no interference of PLC), and a RESET button is working as an input (I0.3) of PLC. Moreover, as mentioned in the block diagram (Appendix B: Block Diagram), annunciator (O0.5) and three other indicators (PUMP A (O0.0), PUMP B (O0.1), ONLINE (O0.2)) are connected to output PLC which is 120VAC input supply rated.

No specific sensors used in this project measure water level; the conductivity of water is used to do it. The inputs I0.0, I0.1, and I0.2 are the water levels LOW, HIGH, and CRITICAL HIGH defined in this project. All three water levels connected at different heights using conductive wire and at the very bottom of sump COMMON are located, which is +24VDC come from PLC. As the number of waters increases in the sump, it works as a conductive layer for this water level and connects electrically. So as the amount of conductive material is more, it gives better results.

Contactors (*2.8 Contactor (A & B)*)are the medium of the device between PLC and pumps. This contractor works according to the PLC ladder logic and can be operated with TEST buttons (2.7 Test Pump (A & B)). TEST button provides a 120VAC supply if it is pressed and hold. The PLC logic is defined to operate PUMP A at the HIGH level of water and both pumps at the CRITICAL HIGH station. When the water level decreases and reaches below HIGH level, PLC will turn OFF PUMP B, and the remaining operation is done with PUMPA. Once the water level goes below the LOW level, both pumps' safety stops and keeps some water in the sump.

Annunciator (2.9 Annunciator (Q0.5)) is the device that informs the user about a critical situation in which water stays above the CRITICAL HIGH level for more than 2 minutes. The name annunciator has been given to it because of its functionality, flashing light, and making noise. In addition, the system enables the indicator to show PLC status, either ON or OFF. The logic behind both functions has been defined in the code. Network 17 offers the reason behind the ONLINE (2.6 System Enable Indicator (Q0.2)) indicator and network 18 to 22 defined for annunciator. The output of the current sensors goes to PLC input which is normally closed. Four sensors connected in the system protect both pumps from overload (A.H. and B.H.) and under load (A.L and B.L). The working phenomenon behind these sensors is the same as the current transformer, which works on EMF principal. According to set current tripping points, when these sensors detect the threshold current, send a signal to PLC, and according to the program, PLC controls contactors of the pump.

Analysis or Software description

For programming as an IDE (Integrated development environment) project, STEP 7 Micro WIN 32 has been used, which works only in Windows 98 Operating System device. To install windows 98 in the latest system, one should download and install Oracle V.M. Virtual Box manager (https://www.virtualbox.org/wiki/Downloads). It allows working on windows 98 in the current O.S. Once all these steps are done, the windows will look like *Figure 11: STEP 7 Micro WIN 32 installed in Windows 98 O.S.* (also shows the first version of ladder logic). Additionally, suppose there is no DB-9 plug available in someone's computer. In that case, one should buy a USB to the serial port cable, which is available on

https://www.amazon.ca/dp/B01NCAQRM9/ref=sspa_dk_detail_0?psc=1&pd_rd_i=B01NCAQR M9&pd_rd_w=Lp8yL&pf_rd_p=2c17e944-5508-41c9-9e34-

<u>6115f0c88f84&pd_rd_wg=Do65E&pf_rd_r=7GR01QXRM61QT9VYCMCT&pd_rd_r=a06b22</u> <u>8e-3d84-4fd4-9f6e-</u>

975ef11d88df&spLa=ZW5jcnlwdGVkUXVhbGImaWVyPUFWS0hRS1RaRzFPM08mZW5jcnl wdGVkSWQ9QTEwMjk1NzExQ0hBTzQ4V1JVNVg2JmVuY3J5cHRIZEFkSWQ9QTAwNzA xNTAxQUE4QUYyTUs5QIY1JndpZGdldE5hbWU9c3BfZGV0YWlsJmFjdGlvbj1jbGlja1JlZGl yZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==. The code for this project is given in Appendix E: Code section. All the rungs and instructions defined and the table mentioned in this section show data of inputs and output of PLC. Network 17 in the program stands for system enable indicator, which states that the siemens ladder logic does not use coil instruction without any input instruction. There is no Status file available like Allen breadly (RSlogic), so to blink, the LED light program was defined in three lines. In this program, Network 6,7, and 8 to flash pump A indicator and Network 14, 16, and 17 are determined to blink pump B. Network 1 to 5 controllers the PUMP A, Network 9 to 13 stands for PUMP B Network 18 to 22 define for annunciator.

Figure 11: STEP 7 Micro WIN 32 installed in Windows 98 O.S.

4. Testing and Results

There are two tests performed on this project. The first is the Current sensors calibration test, and the second is the RESET function test.

The first test has been performed to define the bracket for the pump. The frame means overload

current limit and underload current limit. For example, the pump currently connected in the system consumes 6.7A (I_{FL}) current under normal condition (operation in water, *Figure 12: Current under normal load*). However, when the pump is sucking air, it consumes 7.20A (I_{NL})current, and when an object stuck in the shaft and shaft stops moving (block rotor current), the pump consumes 9.02A (I_{BL}). By observing this result, it can be concluded that if the pump runs under the limit of 6A to 7.10A would be protected from electrical fault all time. So, this pump bracket is 6A to 7.10A.

Figure 12: Current under normal load

To caliber this bracket on this system, one does not need a multimeter; plug in the pump and press the TEST (*Figure 7: TEST PUMP A and B (pushbutton)*)button for that pump and hold it. Then,

open the panel and observe the input signal on PLC. Considering calibration for PUMPA, on A.H. (pump A upper limit), turn POT clockwise until light doesn't show up on the I0.4 indicator, and when the light glows, turn another half in the same direction. For lower limit, Adjust POT on A.L. (pump A lower) and rotate counter-clockwise until light OFF on I0.5 on PLC. Once the I0.5 indicator turns off, turn another half in the same direction. Now, current sensors are calibrated and ready for operation, release the TEST button and close the enclosure.

The second test performed on RESET functionality, the RESET (2.3 Reset (10.3)) button designed to perform two tasks. The first task is to stop the annunciator. To accomplish this, pumps were disconnected from the receptacle then water keeps above the critical high-level surface using an external water tank (*Figure 14: 1000-liter water tank*). While this process time has been recorded for two minutes after two minutes annunciator starts, and to stop it press the RESET button for five seconds. Then, wait for another 2 minutes to make sure the annunciator doesn't turn on.

The second part of this test required the same tools as the first part. To do this, fill out the sump with the help of an external water tank (*Figure 14: 1000-liter water tank*). After this, plugin nominal load, pump, and press the reset button for a moment, and the

Figure 13: Hairdryer measurement

Figure 15: Critical situation (Annunciator ON)

system, will accept this calibrated load. Repeat these steps for PUMP A) and make sure water remains until CRITICAL HIGH level. At this moment, both pumps start functioning. Next, remove the plug of PUMP B to perform the test in no-load condition. Now, current sensors detect this fault, and PLC will turn off the supply for PUMP B. The pump indicator starts blinking, and to continue with this operation, press the RESET button for a moment. If there is a fault system will not allow operating this pump. Also, perform this with the help of a hairdryer consuming 11.1 A (Overload condition, *Figure 13: Hairdryer measurement*). After this, plugin nominal load, pump, and press the reset button for a moment, and the system, will accept this calibrated load. Repeat these steps for PUMP A.

5 Conclusion

This project is now ready to install in users' houses to provide them better service from one available market by monitoring and controlling two pumps. The idea was initiated by an issue facing by the homeowners (especially from the countryside) whose basement got flooded because of a failure in the pump. The dual sump-pump controller allows pumps to perform according to water levels (LOW level, HIGH level, CRITICAL HIGH level), and it also saves pumps from dry-run condition. In addition, for safety, there are replaceable fuses and current sensors which protect the pump from overload and underload condition. Moreover, Indicators, Test Buttons, and an annunciator are mounted to the panel's front, making this system more userfriendly. However, there was an issue regarding PLC logic and current sensors. Therefore, the RESET button was introduced in the circuit, which works as user input. When a fault is detected and the pump stops functioning because of the fault, this RESET button allows checking to run normally. On the flip slide, the initial cost is high compared to the pumps available on the market. Still, this controller works effectively with zero errors and protects the pump from multiple faults, increasing the pump's life span and reducing running costs. As such, it can be said that the initial price is high for this project, but lower maintenance fees and a reliable working process will be helpful to the users over the long term.

6 References

[1] S. P. Parker, Dictionary of Engineering, New York: McGRAW-HILL, 1997, p. 26.

- [2] Kurt_Aust, "Win98_SE_step by step," 10 Jan 2014. [Online]. Available: https://forums.virtualbox.org/viewtopic.php?f=28&t=59559. [Accessed 10 Jan 2014].
- [3] Winworldpc.com, "Windows 98 seond edition," Winworld, May 04 1999. [Online]. Available: https://winworldpc.com/product/windows-98/98-second-edition. [Accessed May 04 1999].
- [4] RDPetruska, "Serial adepter on Win 98," 16 Nov. 2016. [Online]. Available: https://communities.vmware.com/t5/VMware-Workstation-Pro/serial-adapter-on-Win-98/tdp/945290. [Accessed 16 Nov. 2016].
- [5] S. A. Mousa, "#19/S7 200 Siemens/blinking 21," وميض Feb. 2018. [Online]. Available: https://www.youtube.com/watch?v=eXs2cPNoEG0. [Accessed 21 Feb. 2018].
- [6] scitechdd.wordpress, "SciTech Display Doctor 7 beta," SciTech Display Doctor, 30 Oct. 2012.
 [Online]. Available: https://scitechdd.wordpress.com/2012/10/30/4/. [Accessed 15 Mar. 2021].
- [7] J. L. Schum, "Making wiring diagram," in *Locksmithing and Electronic Security Wiring Diagram*, New York, McGraw-Hill, 2003, pp. 41-54.

Appendix A: Gantt Chart

		Mode			baration	Juit		1 million		27	03 10	17 24	31
1		*	Dual Sum Controller	p-pump r	110 days	Mon 21-0	01-04	Fri 21-	06-04				
2		*	Project	Start	0 days	Mon 21-0	01-04	Mon 2	1-01-04		01-04		
3		*	Winter	Term Day 1	0 days	Mon 21-0	01-04	Mon 2	1-01-04		01-04		
4	<.	*	Formal	Proposal	4 days	Tue 21-01	1-19	Fri 21-	01-22				
	~	*	Write	e the memo	2 days	Tue 21-01	1-19	Wed 2	1-01-20			1	
5	~	*	Submit	the memo	0 days	Fri 21-01-	-22	Fri 21-	01-22			5 01-22	
	N.		Risk As	sessment	1 day	Tue 21-01	1-19	Tue 21	-01-19			п	
		*	Com	pelte the form	1 day	Tue 21-01	1-19	Tue 21	-01-19			U J	
		*	Submit	the form	0 days	Fri 21-01-	-22	Fri 21-	01-22			\$ 01-22	
)	4		Critical	Approvals	2 days	Wed 21-0	01-27	Thu 21	-01-28			_	
1		*	Com	plete the form	1 day	Wed 21-0	01-27	Wed 2	1-01-27			II 1	
2	1	*	Obta	in Approvals	1 day	Thu 21-03	1-28	Thu 21	-01-28			ì	5
3		*	Submit	form	0 days	Fri 21-01-	-29	Fri 21-	01-29				01-29
1	4		Block D	Diagram	3 days	Mon 21-0	01-25	Wed 2	1-01-27				
5		*	Crea	te diagram	3 days	Mon 21-0	01-25	Wed 2	1-01-27			—	
5	V	*	Submit	diagram	0 days	Fri 21-01-	-29	Fri 21-	01-29				01-29
7		-4	Gantt C	Chart	2 days	Mon 21-0	01-25	Tue 21	-01-26				
3		*	Prep	ar Gantt chart	2 days	Mon 21-0	01-25	Tue 21	-01-26				
9	5	*	Submit	Gantt chart	0 days	Fri 21-01-	-29	Fri 21-	01-29				01-29
0		*	Start Phys	ical Build	0 days	Wed 21-0	02-03	Wed 2	1-02-03				۰ (
1	-		Engineeri	ng Drawings	4 days	Fri 21-02-	-05	Wed 2	1-02-10				
2		*	First Dr	aft	0 days	Fri 21-02-	-05	Fri 21-	02-05				4
				Task			Inactive S	ummary	0	1	External Tasks		
				Split			Manual T	ask			External Milestone	\diamond	
		10		Milestone	٠		Duration	only			Deadline	•	
Jec	t: Du	al Sump-	pump Cont	Summary	_	1	Manual S	ummary Rol	lup		Progress		_
ie:	FII 21	-01-29		Project Summary	-		Manual S	ummary		_	Manual Progress		
				Inactive Task			Start-onh	,	C		Second Second Second		
				Inactive Mileston	e 🛇		Finish-on	ly	Э				
_			1				Page	e 1					

D	0	Task Mode	Task Name		Duration	Start	Fi	nish	27	'21 Jan 03	10 17	24	'21 Feb
23	4	*	EDR Dra Submis	awing Pakage sion	0 days	Mon 21-02	2-08 N	lon 21-02-08					
24		*	Enginee	ering Design	2 days	Tue 21-02-	-09 W	/ed 21-02-10					
25		*	Drawings	and Parts List	0 days	Thu 21-02-	-11 T	hu 21-02-11					
26	V	*	Mechanic Build Bing With Cont	al Prototype Integrated trols	0 days	Fri 21-03-0	05 F	ri 21-03-05					
27	1	*	Protype F Assesmen	unctionality 5 days		Mon 21-03	Mon 21-03-15 Fri 21-03-19						
28	N.	*	Logboo	k Evolution	5 days	Mon 21-03-15		ri 21-03-19					
29		*	Final Mec Started	hanical Build	0 days	Mon 21-03	3-29 N	lon 21-03-29					
30		*	Review Cu Build With	Advisor	0 days	Mon 21-04	1-05 N	lon 21-04-05					
31		*	Preliminar Submissio	ry Report n	0 days	Wed 21-04	4-14 V	/ed 21-04-14					
32		*	Mechanic	al Build	11 days	Fri 21-04-1	L6 F	ri 21-04-30					
33	T	*	Testing M Selection	emo Test Form	0 days	Fri 21-04-3	80 F	ri 21-04-30					
34	4	*	Testing M	emo	0 days	Fri 21-05-0	07 F	ri 21-05-07					
35		*	Wiring Co	ntrols	0 days	Fri 21-05-0	07 F	ri 21-05-07					
36		*	Mechanic Working a System W	al Buils and Control orking	0 days	Mon 21-05	5-10 N	lon 21-05-10					
				Task		1	Inactive Summ	ary	0	External Tasks	_		
				Split			Manual Task			External Mileston	• •		
Proje	t Du	al Sumn-	numn Cont	Milestone	•		Duration-only			Deadline	+		
Date:	Fri 21	-01-29	pump com	Summary		1	Manual Summa	mary Rollup		Progress	-		
				Project Summary	-	1	Manual Summa	ary		Manual Progress	-		
				Inactive Task			Start-only	E					
				Inactive Mileston	e 🗢		Finish-only	2					
							Page 2						

	A	Task	Task Name	Duration	Start	Finish		27	'21 J	an	10	1 e	17	24	'21 Feb
37			Testing Completed	0 days	Fri 21-05	-14 Fri 21	-05-14	21		03	10		17	24	31
38		*	Completed Project Assesment	4 days	Mon 21-0	05-17 Thu 2	1-05-20								
39		*	Senior project Symposium	4 days	Mon 21-0	05-24 Thu 2	1-05-27								
40	4	*	Fianl Report Submiss	sion 0 days	Fri 21-06	-04 Fri 21	-06-04								
			Task	_		Inactive Summary	1	1	Exte	ernal Tasi	ks	_			_
			Task Split			Inactive Summary Manual Task	1	0	Exte Exte	rnal Tas	ks estone	\$			-
Proje	ct: Du	al Sump-t	Task Split Milestone	•		Inactive Summary Manual Task Duration-only		1	Exte Exte Dea	rnal Tas rnal Mile dline	ks estone	\$ •			_
Proje Date:	ct: Du	al Sump-;	Task Split Milestone Summary	*		Inactive Summary Manual Task Duration-only Manual Summary Re	June 1997	1	Exte Exte Dea	ernal Tas ernal Mile dline gress	ks estone	\$ •			_
Proje Date:	ct: Du	al Sump-r	Dump Cont Summary Project Sur	nmary		Inactive Summary Manual Task Duration-only Manual Summary Re Manual Summary			Exte Exte Dea Prog Man	ernal Tas ernal Mile dline gress nual Prog	ks estone gress	\$ •			-
Proje Date:	ct: Dua Fri 21	al Sump-ț I-01-29	Dump Cont Sump Cont Summary Project Sur Inactive Ta	nmary F		Inactive Summary Manual Task Duration-only Manual Summary Ro Manual Summary Start-only	ollup C		Exte Exte Dea Pro <u>c</u> Man	rnal Tas rnal Mile dline gress nual Prog	ks estone gress	¢ +			-

07 14 21 28	ar 07 14	21	21 Apr 28 04	11 18	25	02 09	16 23	'21 Jun 30 06
2-03								
02-05								
								1
	Task		Inactive Sur	mmary [External Tasks		
	Split		Manual Tas	k I		External Milestone	\diamond	
Project: Dual Sump-pump Cont	Milestone	•	Duration-or	nly		Deadline	+	
Date: Fri 21-01-29	Summary		Manual Sur	mmary Rollup		Progress		
	Project Summary		Manual Sur	mmary F		Manual Progress		
	Inactive Task		Start-only		1			
	mactive milestone	~	rinish-only	-				
			Page	4				

	flar	1'21 A	pr	2 1 2 2	21 May	1 1 1	'21 Jun
07 14 21 28	07 14	21 28	04 11 1	18 25	02 09 16	5 <u>23</u>	30 0
					· •		
						Ť –	
							06-0
							• 00-0
	Tech		Institus Summer	8	- Estema Tark		
	Task		Inactive Summary	1	External Tasks	<u>^</u>	
	Task Split		Inactive Summary Manual Task Durative sala	1	External Tasks External Milestone	*	
ect: Dual Sump-pump Cont	Task Split Milestone	•	Inactive Summary Manual Task Duration-only		External Tasks External Milestone Deadline	¢ •	
ect: Dual Sump-pump Cont e: Fri 21-01-29	Task Split Milestone Summary	•	Inactive Summary Manual Task Duration-only Manual Summary Rollup		External Tasks External Milestone Deadline Progress	¢ •	
iect: Dual Sump-pump Cont e: Fri 21-01-29	Task Split Milestone Summary Project Summary	*	Inactive Summary Manual Task Duration-only Manual Summary Rollup Manual Summary		External Tasks External Milestone Deadline Progress Manual Progress	¢ •	
ect: Dual Sump-pump Cont e: Fri 21-01-29	Task Split Milestone Summary Project Summary Inactive Task	¢	Inactive Summary Manual Task Duration-only Manual Summary Rollup Manual Summary Start-only		External Tasks External Milestone Deadline Progress Manual Progress	۰ ۲	_

Appendix B: Block Diagram

Appendix C: Wiring Diagram

Appendix D: Parts List

PRO.	ECT : DUAL SUMP	PUM	P CONTROLLER							
REV: 8	.00		DATE: MAY 18, 2021	DRAWN BY: ROHAN BHAVSAR				SHE	ET 1 of 1	
ITEM	REF. DESIGNATOR OR ID ON DRAWING	QTY	DESCRIPTION	MANUFACTURER	MANUFACTURER P/N	SUPPLIER	SUPPLIER P/N	ITEM COST	TOTAL	COST
1		1	DIN RAIL	DINNECTOR	DN-R35\$1-2	AUTOMATION DIRECT	DN-R35S1-2	\$ 10.00	\$	5.00
2		5	TERMINAL BLOCK	KONNECT-IT	KN-T12GRY-25	AUTOMATION DIRECT	KN-T12GRY-25	\$ 6.75	\$	1.35
3		5	TERMINAL BLOCK	KONNECT-IT	KN-T12BLK-25	AUTOMATION DIRECT	KN-T12BLK-25	\$ 6.75	\$	1.35
4		5	TERMINAL BLOCK	KONNECT-IT	KN-T12GRN-25	AUTOMATION DIRECT	KN-T12GRN-25	\$ 6.75	\$	1.35
5	• •	5	TERMINAL BLOCK	KONNECT-IT	KN-T12YEL-25	AUTOMATION DIRECT	KN-T12YEL-25	\$ 6.75	\$	1.35
8		5	TERMINAL BLOCK	KONNECT-IT	KN-T12WHT-25	AUTOMATION DIRECT	KN-T12WHT-25	\$ 6.75	\$	1.35
7	•	1	ENCLOSURE	ATTABOX	AH20168SS	AUTOMATION DIRECT	AH20168SS	\$ 218.00	\$	218.00
8		2	FUSE	EDISON	MEQ10	AUTOMATION DIRECT	MEQ10	\$ 84.00	\$	16.80
8	• 1	1	FUSE	EDISON	MEQ20	AUTOMATION DIRECT	MEQ20	\$ 84.00	\$	8.40
10		4	SAPRATOR	AUTOMATION DIRECT	KN-ST1WHT	AUTOMATION DIRECT	KN-ST1WHT	\$ 3.00	\$	1.20
11	•	1	END COVER	AUTOMATION DIRECT	KN-ECET6WHT	AUTOMATION DIRECT	KN-ECET6WHT	\$ 2.00	\$	0.20
12		22	TOP COVER	AUTOMATION DIRECT	KN-TC-1	AUTOMATION DIRECT	KN-TC-1	\$ 6.75	\$	5.94
13	· ·	25	JUMPERS	AUTOMATION DIRECT	KN-2J12	AUTOMATION DIRECT	KN-2J12	\$ 8.25	\$	4.13
14		6	END BRACKETS	AUTOMATION DIRECT	KN-EB4-10	AUTOMATION DIRECT	KN-EB-10	\$ 3.00	\$	1.80
15		1	FINGURE CHANNEL	AUTOMATION DIRECT	T1-1022W-1	AUTOMATION DIRECT	T1-1022W-1	\$ 19.50	\$	19.50
12		2	L16 3/8" LOOMEX/BX CONNECTOR	REXEL	THSL16	ABB.INC	THSL16	\$ 0.45	\$	0.90
13		1	NEMA 5-20 (PLUG)	BRYANT	BRY5366NP	AUTOMATION DIRECT	BRY5366NP	\$ 10.00	\$	10.00
14	•	6	DIN RAIL MOUNTING SCREW	PHILIPS	7985	WURTH	46510	\$ 0.50	\$	3.00
15	•	1	CABLE	SOUTHWIRE	SOOW-18-3BK-1	AUTOMATION DIRECT	SOOW-18-3BK-1	\$ 0.43	\$	0.86
18	B1	1	ANUUNCIATOR	AUTOMATION DIRECT	ECX2071-127R	AUTOMATION DIRECT	ECX2071-127R	\$ 9.25	\$	9.25
17	C1,C2	2	CONTACTOR	FUJI ELECTRIC	SC-E02-110VAC	AUTOMATION DIRECT	SC-E02-110VAC	\$ 17.00	\$	34.00
18	C\$1,C\$2,C\$3,C\$4	4	CURRENT SENSOR	ACUAMP	AC\$150-CE-F	AUTOMATION DIRECT	AC\$150-CE-F	\$ 67.00	\$	268.00
19	F1,F2,F3	3	FUSE BLOCK	BUSSMANN	RM25030-1SR	AUTOMATION DIRECT	RM25030-1SR	\$ 9.75	\$	29.25
20	11,12	2	YELLOW LED INDICATOR	AUTOMATION DIRECT	ECX1053-120	AUTOMATION DIRECT	ECX1053-120	\$ 7.25	\$	14.50
21	13	1	GREEN LED INDICATOR	AUTOMATION DIRECT	ECX1052-120	AUTOMATION DIRECT	ECX1052-120	\$ 7.25	\$	7.25
22	PB1,PB2,PB3	3	PUSH BUTTON	AUTOMATION DIRECT	GCX1104	AUTOMATION DIRECT	GCX1104	\$ 7.25	\$	21.75
23	PLC	1	PLC	SIEMENSE	6ES7 212-1BA01-0XB0	WORLD INDUSTRIAL AUTOMATION	6E\$7212-1BA01-0XB0	\$ 557.88	\$	557.88
28										
25								Total=	\$ 1	1,239.16

Appendix E: Code

- ----

	Name	Address
1	Pump_A_Status_Indicator	Q0.0
2	Pump_B_Status_indicator	Q0.1
3	Syetem_Enable_Indicator	Q0.2
4	Contactor_A	Q0.3
5	Contactor_B	Q0.4
6	Annunciator	Q0.5
7	Low_Level_Sensor	10.0
8	High_Level_Sensor	10.1
9	Critical_High_Level_Sen	10.2
10	Disable_Annunciator	10.3
11	Current_Sensor_Pump_A_0	10.4
12	Current_Sensor_Pump_A_1	10.5
13	Current_Sepsor_Pump_B_0	10.6
14	Current_Senfor_Pump_B_1	10.7
15		
16		
17		

 \mathbb{R}

Appendix F: Design Calculations

Calculation of amen dos Pornel trst P.B. THE TANKS 3 LEP LED indicoph + 30 mm Traminal blocks × 30 mm (P) 2 1 5 mm) 60.29 140 mm 9425 (2×45 mm) 0(0.2 2) 100 mm 3 280 mm 282.74.00 25,00 mm CUMPANT Semson contuctors. BUZZER (2198.9) C 3.53" 30 mm () (2123.6) (1.15) 80mm Dern 226 mm 246 mm 94.25m × (4) × (2) 492 mm 904 marz PLC Fuseblock (2:160) - (6.3") 2× 25.76 LOI) (2480) (3.13) ex 02.1 (3.90") 480 mm . 250 mm X (1 480 0000 250 mm PAll dimension take from datasheet 5283 mm Total dimension = =
Appendix G: Datasheets

Fuse (MEQ20, MEQ10)

General Purpose Midget Class MEQ Fuses

Features

- Compact dimensions
- Fiber tube construction
- Time-delay allows harmless inductive surges to pass without needless fuse opening

Applications

- Supplemental protection of transformers, sole-
- noids, and other high- Inrush circuits
- For motor branch circuit applications, refer to EDCC fuses

MEQ Specifications

Time-Delay

Voltage Rating: MEQ - 500 VAC Ampere Rating: 0.25 - 30 Amps Interrupting Rating: 10,000 RMS Amps

Agency Approvals

- (0.25 30) UL Listed, File E162443
- . (0.25 30) CSA Certified C22.2, Part 59.2, LR700489

CE Compliant

For the latest prices, please check AutomationDirect.com.

MEQ Ge	neral Pl	Irpose M	idget Clas	s Fuses
Part Number	AMP Rating	Pcs/Pkg	Package Weight	Price
MEQ-25	0.25			\$93.00
MEQ-5	0.5]		\$87.00
MEQ1	1			\$84.00
MEQ1-5	1.5]		\$87.00
MEQ2	2			\$84.00
ME02-5	2.5]		\$87.00
MEQ3	3		0.2 lb	\$84.00
MEQ3-5	3.5]		\$93.00
MEQ4	4]		\$84.00
MEQ4-5	4.5	10		\$101.00
MEQ5	5	10		\$84.00
MEQ6	6	1		\$84.00
MEQ7	7]		\$87.00
MEQ8	8]		\$84.00
MEQ 10	10			\$84.00
MEQ12	12			\$84.00
MEQ 15	15]		\$84.00
MEQ20	20	1		\$84.00

DIMENSIONS					
Amps	Femule (in)	Length (in)			
0.25 - 30	13/32	1-1/2			

MEQ25

MEQ30

25

30

\$84.00

\$84.00

CROSS REFERENCE						
EDISON	BUSSMANN	GOULD	LITTELFUSE			
MEQ	FNQ	DTA	FLQ			

www.automationdirect.com

Circuit Protection tCPR-166

32

1 - 800 - 633 - 0405

GCX Series 22mm Metal Pushbuttons

GCX1102

Momentary Flush ON/OFF pushbuttons with protective metal ring (30mm dia. actuator)

Dimensions: mm (inc

12.0

29.8

	<u>GCX1106</u>	Red with "Off" symbol (O) on actuator	\$8.00	One N.C. contact block, 30mm dia. actuator, mounts in 22mm hole
thes]	<u>GCX1107</u>	Green with "On" symbol (I) on actuator	\$8.00	One N.O. contact block, 30mm dia. actuator, mounts in 22mm hole
45.0 (1.77)	-			

Color

Price

Description

Part

lumbe

GCX1106

ø29.5 [ø1.16] 39.8 [1.57]

GCX1107

Momentary Pushbuttons with protective metal ring (40mm dia. actuator)

Part Number	Color	Price	Description
<u>GCX1120</u>	Black	\$8.50	One N.O. contact block, 40mm dia. actuator, mounts in 22mm hole
<u>GCX1121</u>	Red	\$8.50	One N.C. contact block, 40mm dia. actuator, mounts in 22mm hole
GCX1122	Green	\$8.50	
<u>GCX1123</u>	Yellow	\$8.50	One N.O. contact block, 40mm dia.
GCX1124	Blue	\$8.50	actuator, mounts in 22mm hole
GCX1125	White	\$8.50]

Note: Protective silicone covers are not available for this pushbutton.

For accessories, see 22mm Metal Pilot Device Accessories in this section.

www.automationdirect.com

Pilot Devices tPIL-27

1 - 8 0 0 - 6 3 3 - 0 4 0 5

GCX Series 22mm Metal Pilot Devices

Features

Pilot Devices tPIL-24

Contactor (SC-E02-110VAC)

Fuji Duo Series SC-E Contactors

Features

- 5 to 100 hp at 480 VAC
- cULus and CSA approval, CE mark, meets JIS and IEC standards.
- Models SC-E02-xxx to SC-E4-xxx have 3-pole main circuits and come in three sizes with widths of 43 mm, 54 mm, and 67 mm.
- Models SC-E1-xxx to SC-E7-xxx employ a box terminal structure; allowing wires to be connected directly to the main circuit.
- Has a finger-protection terminal structure that prevents the exposure of live parts.
- Models SC-E5-xxx to SC-E7-xxx use a SUPERMAGNET™ (AC-input/DC-output operation) for high operating reliability and requires no surge suppressor.

Small Size

- SC-E02-xxx to E05-xxx 43mm wide
- SC-E1-xxx to E2S-xxx 54mm wide
- SC-E3-xxx, E4-xxx 67mm wide
- SC-E5-xxx: 88mm wide

Safety

 Terminals with finger-louch protection (DIN 57106/VDE 0106 Teil100)

Utility

- Box lug terminal construction
- Long electrical life
- Easy to wire

Environmental

- Low power consumption
- Recycled thermoplastic resin used for plastic parts.
- The names of materials are indicated on all major parts to facilitate recycling

Standards & Approvals

- UL listed , file E42419, Standard UL 508
- cUL listed, file E42419,
- Standard CSA C 22.2 No.14
- VDE 0660
 JIS C 8201-4-1
- IEC 60947-4-1 / EN 60947-4-1
- CE compliant

Optional accessories

- Auxiliary contact blocks
- Coil surge suppression units
- Replacement coils for contactor sizes
 SC-E5 and larger

SC-E Series Contactors Specifications - UL and CSA																														
		No mi Voltaj	Volta Rated Capacity (HP)				Rated Curre	Rated The m (A) [nd	SCOR (KA)	Ra teo Voltaj	Fram (mm)																			
Model	Price	nal Co ge	3-Pha	se Moto	or		1-Pha: Motor	92	IAC-3 nt(A)	nal Cur nal Cur	Rating	l Insula ge (V)	e Widt																	
		ii i	200V	220- 240V	440- 480V	550- 600 V	100- 120V	220- 240V	note 1]	nent	sl	ation	4																	
SC-E02-24 VAC	\$17.00	24VAC																												
SC-E02-110VAC	\$17.00	110VAC																												
SC-E02-220VAC	\$17.00	220VAC	2	2	5	5	1/2	-		20																				
SC-E02-440VAC	\$17.00	440-480VAC	4	2	2		1/5	1		20																				
SC-E02-500VAC	\$17.00	500-550VAC																												
SC-E02G-24VDC	\$19.00	24VDC																												
SC-E03-24 VAC	\$21.50	24VAC																												
SC-E03-110VAC	\$21.50	110VAC	3	3 7.5	7.5	7.5	1/2	2	12	20																				
SC-E03-220VAC	\$21.50	220VAC																												
SC-E03-440VAC	\$21.50	440-480VAC																												
SC-E03-500VAC	retired	Pl	ease cons	sider the Fi	uji Electri	c SC-E se	ries as co	mparable	replacement																					
SC-E03G-24VDC	\$30.50	24VDC	3	3	7.5	7.5	1/2	2	12	20	5	690	43																	
SC-EU4-24 VAC	\$27.00	24VAC																												
SC-EU4-TTUVAC	\$27.00	TIUVAC																												
SC-EU4-22UVAC	\$27.00	ZZUVAU	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	10	10	1	3	18	25			
SC-EU4-44UVAC	\$27.00	500 550VAC																												
SC-E04-SUUVAC	\$27.50	24000																												
SC-E05-24VAC	\$35.00	24VAC																												
SC-E05-110VAC	\$35.00	110VAC																												
SC-F05-220VAC	\$35.00	220VAC																												
SC-F05-440VAC	\$35.00	440-480VAC	5	7.5	15	15	2	3	25	32																				
SC-E05-500VAC	\$35.00	500-550VAC																												
SC-E05G-24VDC	\$45.00	24VDC																												
TABLE CONTINUED NED Notes: 1. AC3 type loa 2. AC1 non-ind	XT PAGE ds consis uctive or s	t of squirrel ca lightly in duct	ige three ive loads	-phase m . Typ ica li	otors; od ly resist i	ca sional, ve load s (, limited (i.e. furn	jogging d aces, ove	luty. ins, etc.)																					

Fuji Duo Series SC-E Contactors Accessories

Optional accessories

Auxiliary contact blocks with terminal covers

Maximum auxiliary contact blocks: 2 side mounted (1 per side) OR 1 front mounted. The front and side blocks cannot be mounted together on the same contactor.

Caution on use:

- Front mounting auxiliary contact block and side mounting block cannot be attached to one contactor at the same time.
- Only one front mounting block can be attached to one contactor.
- Where interlock unit is already attached, side mounting auxiliary contact block can be attached on one side only.

Auxiliary Contact Blocks with Terminal Covers								
Part Number	Price	Applicable Contactor	Mounting	Number of Contacts	Contact Arrangement			
SZ-A22T	\$14.50		Front mounting	4	2N0 + 2NC			
SZ-A20T	\$9.00	SC-E02(G)-xox to E4(G)-xox		2	2N0			
SZ-A11T	\$9.00				1N0 + 1NC			
SZ-AS1T	\$14.50	SC-E02(G)-xox to E4(G)-xox	Side mounting	2	1N0 + 1NC			
SZ-AS2T	\$14.50	SC-E5, E6, E7-xxx, SC-N4, N5, N6, N7, N8, N10, N11, N12, SC-E5(G)-xxx to E7(G)-xxx		2	1N0 + 1NC			

Accessory Auxiliary Contact Ratings - UL and CSA					
NEMA ICS 5-2000 Ratings (me1)					
AC Ratings		DC Ratings			
Designation	Making VA	Breaking VA	Designation	Making/Breaking VA	
A600 7200 720 Q300 69					
For more information, refer to Control Circuit Contact Electrical Ratings, page MRC-111					

Accessory Auxiliary Contact Ratings - IEC and JIS continued on next page.

tMRC-35 Motor Controls

1-800-633-0405

Fuji Duo Series SC-E Contactors

Dimensions (mm)

Coil surge suppression units

SZ-Z1, Z2, Z4, Z5

Wiring diagrams

SC-E02 to E05-xxx + SZ-Z1, Z2 (Built-in varistor)

SC-E02 to E05-xxx + SZ-Z4, Z5 (Built-in capacitor/resistor)

Weight: 14 g

SZ-Z31, Z32, Z34, Z35, Z36, Z36, Z37

Weight: 15 g

tMRC-42

SC-E1 to E4-xxx + SZ-Z31, Z32 (Built-in varistor)

SC-E1 to E4-xxx + SZ-Z34, Z35 (Built-in capacitor/resistor)

SC-E1G to E4G-xxx + SZ-Z36, Z37 (Built-in capacitor/resistor)

Motor Controls

1-800-633-0405

Annunciator (ECX2071-127R)

Audible annunciator

• 80dB @ 10cm

• 25mA @ 24V

- Intermittent sound when energized
- IP20 before installation
- IP65 after installation

Part Number	Color	Price	Description
ECX2070-24	Black	\$7.25	22mm, 25mA audible (80dB at 10cm) buzzer annunciator. 24VAC/DC
ECX2070-127	Black	\$7.25	22mm, 25mA audible (80dB at 10cm) buzzer annunciator. 120VAC/DC
ECX2071-24R	Red	\$9.25	22mm, 25mA audible (80dB at 10cm) buzzer annunciator with non-replaceable LED indicator. 24VAC/DC
ECX2071-127R	Red	\$9.25	22mm, 25mA audible (80dB at 10om) buzer annunciator with non-replaceable LED indicator.120VAC/DC

Dimensions: mm [inches]

Current Sensors (ACS150-CE-F)

1 - 8 0 0 - 6 3 3 - 0 4 0 5

For the latest prices, please check AutomationDirect.com.

ACS150 Series

ACS150 Series current operated switches combine a current transformer, signal conditioner and limit alarm into a single package for use in monitoring or proof of operation applications. Offering an adjustable setpoint range of 1 to 150 amps and universal, solid-state outputs, the self-powered ACS150 can be tailored to provide accurate and dependable digital indication of over-current conditions across a broad range of applications. The ACS150 is available in fixed-core and split-core models.

Applications

Electronic Proof of Flow

- Current operated switch eliminates the need for multiple pipe or duct penetrations.
- More reliable than electromechanical pressure or flow switches.

Conveyors

 Detect jams and overloads; useful when interlocking multiple conveyor sections

Heating Circuits

 Detect ON/OFF status; faster response times than with temperature sensors.

Loss of Load Detective

 Detect belt or coupling breaks with fast response times

Lighting Circuits

Easter and faster than photocells

Features

- Choose from:
- N.O. 0.15 A @ 240VAC or VDC or N.C. 0.20 A @ 135VAC or VDC output options.
- Status LED provides visual indication of setpoint trip and contact action.
- Self-powered operation cuts installation time and operating costs.
- Potentiometer-adjustable trip points speed start-up and allow for tailored operation.
- Choose either split core or fixed core enclosure style. Split core packages allow easy installation on existing systems; fixed core enclosures offer more compact package for OEM or new installations.
- Built-in mounting feet with optional 35mm
 DIN rail adapter available.
- Five-year warranty

ACS150 AC Current Operated Switches							
Part Number	Description	Pcs/Pkg	Wt (lb)	Price			
ACS150-AE-F	AcuAMP AC current switch, fixed core, 1-150A sensing range, 1-150A adjustable inp point, 15-tum potentionneter, solid state switch, N.O. output, 0.15A @ 240 VAC/VDC output rating.	1	0.30	\$67.00			
ACS150-AE-S	AcuAMP AC current switch, split core, 1.75–150A sensing range, 1.75– 150A adjustable trip point, 4-fum potentiometer, solid state switch, N.O. output, 0.15A 62 240 VAC/VDC output rating.	1	0.35	\$82.00			
ACS150-CE-F	AcuAMP AC current switch, fixed core, 1-150A sensing range, 1-150A adjustable trip point, 15-turn potentiometer, solid state switch, N.C. output, 0.2A (2) 135 VAC/VDC output rating.	1	0.30	\$67.00			
ACS150-CE-S	AcuAMP AC current switch, split core, 1,75-150A sensing range, 1,75- 150A adjustable trip point, 4-fum potentiometer, solid state switch, N.C. output, 0.2A @ 135 VAC/VDC output rating.	1	0.35	\$82.00			
Accessories							
DRA-2B	35mm DIN rail adapters, 1.70"x0.45"x0.83" [43.7x11.4x21.0 mm]	2	0.40	\$3.75			

ACS150 Sensed Current Limits					
	Inout	A	mps		
Туре	rpe Input Range		6 Sec. max	1 Sec. max	
Fixed Core	1 to 150A	150	400	1000	
Split Core	1.75 to 150A	150	400	1000	

ACS150 Series Specifications				
Power Supply	None - Self-powered			
Output	Isolated solid-state switch			
Output Rating	N.O. 0.15 A @ 240VAC or VDC N.C. 0.20 A @ 135VAC or VDC			
Response Time	120ms			
Off State Leakage	<10µA			
Setpoint (Trip Point)	Fixed core: 1 to 150A. Split core: 1.75 to 150A			
Hysteresis	5% of Setpoint			
Setpoint (Trip Point) Adjust	Fixed core: 15-turn potentiometer.; Split core: 4-turn potentiometer			
Isolation Voltage	UL listed to 1,270VAC. Tested to 5,000VAC (1 minute max)			
Frequency Range	6 to 100 Hz			
Case	UL 94V-0 flammability rated			
	Operating Temperature: -58 to 149°F [-50 to 65°C]			
Environmental	Relative Humidity: 0-95% RH, Non-condensing			
Chynolmienal	Pollution Degree 2			
	Altitude to 2000 meters			
Certifications	cULus listed (E222847), CE			

www.automationdirect.com

Current Sensors

24

Dimensions Inches [mm]

Current Sensors

25

AC Current Sensors, Switches and Transducers Application Guide

Application Guide

AcuAMP current sensors are a great fit for many applications including mate- monitoring loads to preventive mainterial handling, fan and pump applica-

transducers, current switches and current indicators, this sensor family gives you valuable data for processes ranging from nance. Models with the ability to read True tions, and heating systems. With current RMS non-sinusoidal waveforms make it

Heater Life Prediction

Use the application examples to help choose the best sensor model for your application.

frequency drives.

easy to monitor applications using variable

Pump Load Monitoring

Lamp Failure Detection

ACS Series Current Operated Switch

Crusher/Grinder/Shredder Motor Interlocks

The performance of size reduction equipment like crushers or grinders can be optimized by controlling the in-feed in order to: • Help prevent jamming

- · Improve the uniformity of the resultant product
- Enhance overall production efficiency

Electric Motor Load Status

Current Sensors

4

nactiv

Relay ontac

When L1 fails, the current drops. The Current Operated Switch dotocts the drop in current and activates the rolay which turns on the back-up tamp L2. The system may be configured fail-safe by using a Normally Open Current switch logisther with Normally Closed rolay contacts

A.3 CPU 212 AC Power Supply, DC Inputs, Relay Outputs

General Features		Input Points		
Physical size (L x W x D)	160 x 80 x 62 mm	Input type (IEC 1131-2)	Type 1 sinking	
Weight	(6.3 x 3.15 x 2.44 in.) 0.4 kg (0.9 lbs.)	ON state range	15-30 VDC, 4 mA minimum 35 VDC, 500 ms surge	
Power dissipation	6 W	ON state nominal	24 VDC, 7 mA	
User program size/storage	512 words/EEPROM	OFF state maximum	5 VDC, 1 mA	
User data size/storage Data retention	512 words/RAM 50 hr typical (8 hr minimum at 40° C)	Response time 10.0 to 10.7	0.3 ms maximum	
Local I/O ¹	8 inputs/6 outputs	Optical isolation	500 VAC, 1 min	
Maximum number of expansion modules	2	Voltage/frequency range	85 to 264 VAC at 47 to 63 Hz	
Digital I/O supported	64 inputs/64 outputs	Input current	4 VA typical, CPU only	
Analog I/O supported	16 inputs/16 outputs	Holdun time	20 mg minimum from	
Boolean execution speed	1.2 µs/instruction	Holdup time	110 VAC	
Internal memory bits	128	Inrush current	20 A peak at 264 VAC	
Timers	64 timers	Fusing (non-replaceable)	2 A, 250 V, slow blow	
Counters	64 counters	5 VDC current	260 mA for CPU 340 mA for expansion I/O	
High-speed counters	1 software (2 KHz max.)	Isolated	Yes. Transformer, 1500 VAC, 1 min	
Analog adjustments	1	isolated		
Standards compliance	UL 508 CSA C22.2 142 FM Class L Division 2	DC Sensor Supply		
	VDE 0160 compliant CE compliant	Voltage range	20.4 to 28.8 VDC	
Output Points		Ripple/noise (<10MHz)	1 V peak-to-peak maximum	
Output type	Relay, dry contact	24 VDC available current Short circuit current limit	180 mA < 600 mA	
Voltage range	5 to 30 VDC/250 VAC	Isolated	No	
Maximum load current	2 A/point, 6 A/common			
Overcurrent surge	7 A with contacts closed			
Isolation resistance	100 M Ω minimum (new)			
Switching delay	10 ms maximum			
Lifetime	10,000,000 mechanical 100,000 with rated load			
Contact resistance	$200 \text{ m}\Omega \text{ maximum (new)}$			
Isolation coil to contact contact to contact (between open contacts)	1500 VAC, 1 min 750 VAC, 1 min			
Short circuit protection	None			

Order Number: 6ES7 212-1BA01-0XB0

1 The CPU reserves 8 process-image input and 8 process-image output image register points for local I/O.

A-8

S7-200 Programmable Controller System Manual C79000-G7076-C230-02

Provide Adequate Clearance for Cooling and Wiring

S7-200 devices are designed for natural convection cooling. For proper cooling, you must provide a clearance of at least 25 mm above and below the devices. Also, allow at least 75 mm of depth.

Caution

For vertical mounting, the maximum allowable ambient temperature is reduced by 10 degrees C. Mount the S7-200 CPU below any expansion modules.

When planning your layout for the S7-200 system, allow enough clearance for the wiring and communications cable connections. For additional flexibility in configuring the layout of the S7-200 system, use the I/O expansion cable.

Figure 3-1 Mounting Methods, Orientation, and Clearance

Mounting Dimensions

The S7-200 CPUs and expansion modules include mounting holes to facilitate installation on panels. Refer to Table 3-1 for the mounting dimensions.

Using Master and Slave Devices on a PROFIBUS Network

The S7-200 supports a master-slave network and can function as either a master or a slave in a PROFIBUS network, while STEP 7-Micro/WIN is always a master.

Masters

A device that is a master on a network can initiate a request to another device on the network. A master can also respond to requests from other masters on the network. Typical master devices include STEP 7-Micro/WIN, human-machine interface devices such as a TD 200, and S7-300 or S7-400 PLCs. The S7-200 functions as a master when it is requesting information from another S7-200 (peer-to-peer communications).

Slaves

A device that is configured as a slave can only respond to requests from a master device; a slave never initiates a request. For most networks, the S7-200 functions as a slave. As a slave device, the S7-200 responds to requests from a network master device, such as an operator panel or STEP 7-Micro/WIN.

Setting the Baud Rate and Network Address

The speed that data is transmitted across the network is the baud rate, which is typically measured in units of kilobaud (kbaud) or megabaud (Mbaud). The baud rate measures how much data can be transmitted within a given amount of time. For example, a baud rate of 19.2 kbaud describes a transmission rate of 19,200 bits per second.

Every device that communicates over a given network must be configured to transmit data at the same baud rate. Therefore, the fastest baud rate for the network is determined by the slowest device connected to the network.

Table 7-1 lists the baud rates supported by the S7-200.

The network address is a unique number that you assign to each device on the network. The unique network address ensures that the data is transferred to or retrieved from the correct device. The S7-200 supports network addresses from 0 to 126. For an S7-200 with two ports, each port has a network address. Table 7-2 lists the default (factory) settings for the S7-200 devices. Table 7-1 Baud Rates Supported by the \$7-200

Network	Baud Rate
Standard Network	9.6 kbaud to 187.5 kbaud
Using an EM 277	9.6 kbaud to 12 Mbaud
Freeport Mode	1200 baud to 115.2 kbaud

Table 7-2 Default Addresses for S7-200 Devices

S7-200 Device	Default Address
STEP 7-Micro/WIN	0
HMI (TD 200, TP, or OP)	1
S7-200 CPU	2

Bit Logic Instructions

Contacts

Standard Contacts

The Normally Open contact instructions (LD, A, and O) and Normally Closed contact instructions (LDN, AN, ON) obtain the referenced value from the memory or from the process-image register. The standard contact instructions obtain the referenced value from the memory (or process-image register if the data type is I or Q).

The Normally Open contact is closed (on) when the bit is equal to 1, and the Normally Closed contact is closed (on) when the bit is equal to 0. In FBD, inputs to both the And and Or boxes can be expanded to a maximum of 32 inputs. In STL, the Normally Open instructions Load, AND, or OR the bit value of the address bit to the top of the stack, and the Normally Closed instructions Load, AND, or OR the logical NOT of the bit value to the top of the stack.

Immediate Contacts

An immediate contact does not rely on the S7-200 scan cycle to update; it updates immediately. The Normally Open Immediate contact instructions (LDI, AI, and OI) and Normally Closed Immediate contact instructions (LDNI, ANI, and ONI) obtain the physical input value when the instruction is executed, but the process-image register is not updated.

The Normally Open Immediate contact is closed (on) when the physical input point (bit) is 1, and the Normally Closed Immediate contact is closed (on) when the physical input point (bit) is 0. The Normally Open instructions immediately Load, AND, or OR the physical input value to the top of the stack, and the Normally Closed instructions immediately Load, AND, or OR the logical NOT of the value of the physical input point to the top of the stack.

NOT Instruction

The Not instruction (NOT) changes the state of power flow input (that is, it changes the value on the top of the stack from 0 to 1 or from 1 to 0).

Ľ			
LD	Bit	LDI	Bit
A .	Bit	AL	Bit
0	Bit	OI	Bit
LDN	Bit	LDNI	Bit
AN	Bit	ANI	Bit
ON	Bit	ONI	Bit
NOT			
EU			
ED			

Coils

Output

The Output instruction (=) writes the new value for the output bit to the process-image register. When the Output instruction is executed, the S7-200 turns the output bit in the process-image register on or off. For LAD and FBD, the specified bit is set equal to power flow. For STL, the value on the top of the stack is copied to the specified bit.

Output Immediate

The Output Immediate instruction (=I) writes the new value to both the physical output and the corresponding process-image register location when the instruction is executed.

When the Output Immediate instruction is executed, the physical output point (Bit) is immediately set equal to power flow. For STL, the instruction immediately copies the value on the top of the stack to the specified physical output bit (STL). The "I" indicates an immediate reference; the new value is written to both the physical output and the corresponding process-image register location when the instruction is executed. This differs from the non-immediate references, which write the new value to the process-image register only.

Set and Reset

The Set (S) and Reset (R) instructions set (turn on) or reset (turn off) the specified number of points (N), starting at the specified address (Bit). You can set or reset from 1 to 255 points.

SMATIC

If the Reset instruction specifies either a timer bit (T) or counter bit (C), the instruction resets the timer or counter bit and clears the current value of the timer or counter.

Error conditions that set ENO = 0

- 0006 (indirect address)
- 0091 (operand out of range)

Set Immediate and Reset Immediate

The Set Immediate and Reset Immediate instructions immediately set (turn on) or immediately reset (turn off) the number of points (N), starting at specified address (Bit). You can set or reset from 1 to 128 points immediately.

The "I" indicates an immediate reference; when the instruction is executed, the new value is written to both the physical output point and the corresponding process-image register location. This differs from the non-immediate references, which write the new value to the process-image register only.

Error conditions that set ENO = 0

- 0006 (indirect address)
- 0091 (operand out of range)

Table 6-4 Valid Operands for the Bit Logic Output Instructions

Inputs/Outputs	Data Type	Operands
Bit	BOOL	I, Q, V, M, SM, S, T, C, L
Bit (immediate)	BOOL	Q
N	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Timer Instructions

SIMATIC Timer Instructions

On-Delay Timer

Retentive On-Delay Timer

The On-Delay Timer (TON) and Retentive On-Delay Timer (TONR) instructions count time when the enabling input is on. The timer number (Txx) determines the resolution of the timer, and the resolution is now shown in the instruction box.

Off-Delay Timer

The Off-Delay Timer (TOF) is used to delay turning an output off for a fixed period of time after the input turns off. The timer number (Txx) determines the resolution of the timer, and the resolution is now shown in the instruction box.

Table 6-72	Valid Operands	for the SIMATIC	Timer Instructions

Inputs/Outputs	Data Types	Operands
Тхх	WORD	Constant (T0 to T255)
IN	BOOL	I, Q, V, M, SM, S, T, C, L, Power Flow
PT	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

Tip

You cannot share the same timer number (Txx) for an off-delay timer (TOF) and an on-delay timer (TON). For example, you cannot have both a TON T32 and a TOF T32.

As shown in Table 6-73, the three types of timers perform different types of timing tasks:

- You can use a TON for timing a single interval.
- You can use a TONR for accumulating a number of timed intervals.
- You can use a TOF for extending time past an off (or false) condition, such as for cooling a motor after it is turned off.

Counter Instructions

SIMATIC Counter Instructions

Count Up Counter

The Count Up instruction (CTU) counts up from the current value each time the count up (CU) input makes the transition from off to on. When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns on. The counter is reset when the Reset (R) input turns on, or when the Reset instruction is executed. The counter stops counting when it reaches the maximum value (32,767).

STL operation :

- Reset input: Top of stack
- Count Up input: Value loaded in the second stack location

Count Down Counter

The Count Down instruction (CTD) counts down from the current value of that counter each time the count down (CD) input makes the transition from off to on. When the current value Cxx is equal to 0, the counter bit Cxx turns on. The counter resets the counter bit Cxx and loads the current value with the preset value PV when the load input LD turns on. The counter stops upon reaching zero, and the counter bit Cxx turns on.

STL operation:

- Load input: Top of stack
- Count Down input: Value loaded in the second stack location.

SIMATIC IEC 1131

Count Up/Down Counter

The Count Up/Down instruction (CTUD) counts up each time the count up (CU) input makes the transition from off to on, and counts down each time the count down (CD) input makes the transition from off to on. The current value Cxx of the counter maintains the current count. The preset value PV is compared to the current value each time the counter instruction is executed.

Upon reaching maximum value (32,767), the next rising edge at the count up input causes the current count to wrap around to the minimum value (-32,768). On reaching the minimum value (-32,768), the next rising edge at the count down input causes the current count to wrap around to the maximum value (32,767).

When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns on. Otherwise, the counter bit turns off. The counter is reset when the Reset (R) input turns on, or when the Reset instruction is executed.

STL operation:

- Reset input: Top of stack
- Count Down input: Value loaded in the second stack location
- Count Up input: Value loaded in the third stack location

Inputs/Outputs	Data Types	Operands
Схх	WORD	Constant (C0 to C255)
CU, CD, LD, R	BOOL	I, Q, V, M, SM, S, T, C, L, Power Flow
PV	INT	IW, QW, VW, MW, SMW, SW, LW, T, C, AC, AIW, *VD, *LD, *AC, Constant

Table 6-22 Valid Operands for the SIMATIC Counter Instructions

Math Instructions

Add, Subtract, Multiply, and Divide Instructions

Add	Subtract	
IN1 + IN2 = OUT	IN1 - IN2 = OUT	LAD and
IN1 + OUT = OUT	OUT - IN1 = OUT	STL

The Add Integer (+I) or Subtract Integer (-I) instructions add or subtract two 16-bit integers to produce a 16-bit result. The Add Double Integer (+D) or Subtract Double Integer (-D) instructions add or subtract two 32-bit integers to produce a 32-bit result. The Add Real (+R) and Subtract Real (-R) instructions add or subtract two 32-bit real numbers to produce a 32-bit real number result.

Multiply	Divide	
IN1 * IN2 = OUT	IN1 / IN2 = OUT	LAD and
IN1 * OUT = OUT	OUT / IN1 = OUT	STL

The Multiply Integer (*I) or Divide Integer (/I) instructions multiply or divide two 16-bit integers to produce a 16-bit result. (For division, no remainder is kept.) The Multiply Double Integer (*D) or Divide Double Integer (/D) instructions multiply or divide two 32-bit integers to produce a 32-bit result. (For division, no remainder is kept.) The Multiply Real (*R) or Divide Real (/R) instructions multiply or divide two 32-bit real numbers to produce a 32-bit real number result.

SM Bits and ENO

SM1.1 indicates overflow errors and illegal values. If SM1.1 is set, then the status of SM1.0 and SM1.2 is not valid and the original input operands are not altered. If SM1.1 and SM1.3 are not set, then the math operation has completed with a valid result and SM1.0 and SM1.2 contain valid status. If SM1.3 is set during a divide operation, then the other math status bits are left unchanged.

Error conditions that set ENO = 0

Special Memory bits affected

- SM1.1 (overflow)
- SM1.1 (overflow, illegal value generated during the operation, or illegal input parameter found)
- SM1.3 (divide by zero)
 0006 (indirect address)
- SM1.2 (negative)

SM1.0 (zero)

SM1.3 (divide by zero)

SIMATIC

STL	+1	IN1, (тис	
	+1	+D	+R	
	-1	-D	-R	
	*	*D	*R	
	/1	/D	/R	

DIN Rail (DN-R35S1-2)

1 - 8 0 0 - 6 3 3 - 0 4 0 5

For the latest prices, please check AutomationDirect.com.

DINnectors Accessories

Steel DIN Rails Features

35mm wide

- Available in 1-meter lengths
- 7.5 mm-high rails primarily used to mount terminal blocks, relays, timers and small PLCs such as the DL05, DL06, DL105, DL205, CLICK, and
- Productivity3000 • 15mm-high rails for mounting larger and heavier components such as contactors and larger PLCs

15mm wide

- Available in 1-meter lengths
- DN-R15S1 exclusively for mounting mini terminal blocks such as the DN-M10-A

	Part Number	Pcs/ Pkg	Price/ Pkg	Part Number	Pcs/ Pkg	Price/ Pkg	Part Number	Pcs/ Pkg	Price/ Pkg
014 0= #	DN-R35 S1	10	\$32.50	DN-R35HS1	10	\$57.00	DN-R15S1	10	\$29.50
DIN Kall	DN-R35 \$1-2	2	\$10.00	DN-R35HS1-2	2	\$15.00	DN-R15S1-2	2	\$9.50
Steel DIN Rails Specifications									
Description	DINnector DIN rail, slotted, 35mm, 7.5mm height, 1m length, plated steel. Package of 10. DINnector DIN rail, slotted, 35mm, bight, 1m length, plated steel. Package of 10. DINnector DIN rail, slotted, 15mm S.5mm height, 1m length, plated steel. Package of 2.					i, 15mm, plated			
Plating		Zinc-plated and chromated							
International Standards	EN 60715, RoHs								
Suggested Mounting Screw Type	M6 M6 M4				M				

DINnectors Accessories

Dimensions mm [inches]

www.automationdirect.com

Terminal Blocks tTBL-33

1-800-633-0405 Modular Fuse Holders for **Class CC & Midget Class Fuses**

Features

- EHCC Series: High SCCR rated, UL Listed CC holder with indicator option for 600VAC/DC
- EHM Series: UL Recognized midget holders
- Minimum 90VAC/DC required for Illumination
- Rated for use with 75°C or 90°C wire, fine stranded wire, spade terminals and comb-bus bars. Use any higher temperature rated wire with
- appropriate derating.
- Complete range of UL Listed and high SCCR rated 1-phase and 3-phase finger-safe comb-bus bars and power feed lugs
- Polyester material is UL 94V0 rated, self extinguishing
- Multi-phase connections available for ganging up to 4 poles'
- Mounts on 35 mm DIN rail
- . IP20 rated
- Spade terminals are accepted (Max width-10mm, Min ID of slot 4mm Max ID of slot 5mm)
- · Wire ferrules may not be used.

Application

- . EHM: Edison MCL, MOL, MEQ, MEN, or midget fuses
- · EHCC: Edison HCLR, HCTR, EDCC fuses, or class CC fuses

Agency Approvals/ Standards Class CC

- UL File E300536
- Guide IZLT Listed
- CSA File 47235, Class 6225-01
- CE Compliant
- RoHS, Reach

Agency Approvals/ Standards Midget

- UL File E300536
- IZLT2 Recognized
- CSA File 47235, Class 6225-30
- IEC 60269-2
- CE Compliant
- RoHS, Reach

	Modular Fuse Holder Selection Table													
Series Size	Max Voltage & Current	IEC	UL	Phase Configuration	Fuse Holder Without Indica- tion	Box Qty.	Pkg. Wt. (Ib.)	Price	Fuse Holder with NEON Indication	Product Weight (lb.)	Box Qty.	Price		
				1 colo	EHM1 DU	1	0.12	\$9.50	EHM1DIU	0.12	1	\$12.50		
	ш	•	· ·	i pole	EHM1 DU-12	12	1.42	\$97.00	EHM1DIU-12	1.42	12	\$129.00		
EHM	600V/30A			2004	EHM2DU	1	0.24	\$19.50	EHM2D IU	0.24	1	\$25.50		
Class	IEC		· ·	z pole	EHM2DU-6	6	1.42	\$101.00	EHM2DIU-6	1.42	6	\$132.00		
	690V/32A			2 poly	EHM3DU	1	036	\$30.00	EHM3D IU	0.36	1	\$40.50		
				3 pole	EHM3DU-4	4	1.42	\$102.00	EHM3DIU-4	1.42	4	\$136.00		
				1 polo	EHCC1DU	1	0.12	\$11.00	EHCC1DIU	0.12	1	\$14.50		
				r pole	EHCC1DU-12	12	1.42	\$114.00	EHCC1DIU-12	1.42	12	\$148.00		
EHCC	UL			2 004	EHCC2DU	1	0.24	\$23.00	EHCC2DIU	0.24	1	\$30.00		
CC	600V/30A	30A ••		z pole	EHCC2DU-6	6	1.42	\$117.00	EHCC2DIU-6	1.42	6	\$152.00		
						2 pals	EHCC3DU	1	0.36	\$34.50	EHCC3DIU	0.36	1	\$45.50
				2 bois	EHCC3DU-4	4	1.42	\$118.00	EHCC3DIU-4	1.42	4	\$153.00		

* To add additional poles, see multi-pole connection kit <u>JV-L</u> in a ccessories. One <u>JV-L</u> bit is sufficient to gang up to 4 poles. • UL Recognize d, CSA •• UL Listed, CSA

For the latest prices, please check AutomationDirect.com.

Modular Fuse Holders for Class CC & Midget Class Fuses

			M	odular Fus	e Holder S	pecification	S			
Part Number w/o Indication	Part Number w/Indication	Holder Size	Max Voltage & Current	Number of poles	Wire Range	Maximu m Torque	Operating Temperature	SCCR Rating	Terminal Rating	Flammability Rating
EHM1DU	EHM1 DIU			1						
EHM1DU-12	EHM1DIU-12	FHM	III /CSA							
EHM2DU	EHM2DIU	Midget	600V/30A	2]			100kA		
EHM2DU-6	EHM2DIU-6	and	IEC	2				rms sym	Solid,	
EHM3DU	EHM3DIU	10638	69UV/SZA	2			-20°C to +90°C		Stranded, Fine stranded	
EHM3DU-4	EHM3DIU-4]		3	18-4 AWG	30 lb-in	(indicating)		Spade lug,	UL 94V0
EHCC1DU	EHCC1DIU			1	(0.8-21 mm²)	maximum	-20°C to +120°C		Single and	self-extinguishing
EHCC1DU-12	EHCC1DIU-12						(non-indicating)		75°C and 90°C	
EHCC2DU	EHCC2DIU	EHCC	UL/CSA	2]			200kA	Cu wire	
EHCC2DU-6	EHCC2DIU-6	CC	600V/30A	2				rms sym		
EHCC3DU	EHCC3DIU			2						
EHCC3DU-4	EHCC3DIU-4			3						

	CHCC and EHM Wire Range	e, Type and Torque	
Wire Range	Conductor Type	Number of Conductors	Torque
18-14 AWG (0.8-2.0 mm ²)		Single	20 lb-in (2.3 N-m)
18-16 AWG (0.8-1.3 mm²)	Colid Granded	Deal	25 lb-in (2.8 N•m)
14-10 AWG (2.0-5.2 mm ²)	Solid, Scanded	Ditai	
12-10 AWG (3.3-5.2 mm²)]		T
8-4 AWG (8.3-21.1 mm²)	Stranded, Fine Stranded	Sinda	30 lb-in (3.4 N-m)
18-14 AWG (0.8-2.0 mm²)	Spade Terminal	Single	
N/A	Comb Bus		

Fuse Holder Dimensions

mm [inches]

EHM Midget Class / EHCC Class CC

Circuit Protection tCPR-202

53

LED indicators (ECX1053-120, ECX1052-120)

1 - 8 0 0 - 6 3 3 - 0 4 0 5

ECX Series 22mm Plastic Indicator Lights

Plastic incandescent indicator lights

ECX1051-24

These indicators have a key to prevent rotation when mounted.

12 models available:

- Available in six colors
- 24V and 120V models
- Incandescent bulbs included
- Accepts LED replacement lamps
- Monoblock design for easy mounting
- Side wire entry with back screw terminals for easy wiring and main tenance
- IP20 rated before installation
- IP65 rated after installation
- Note: When using LED replacement lamps with these indicators, it may be necessary to remove the frosted diffuser for enhanced illumination.

Part Number	Lamp Color	Price	Description	Replacement Incandescent Bulb	Replacement Lamp
ECX1051-24	Red	\$6.00	22mm monoblock incandescent indicator light, 24VDC/VAC	ECX1902-5 5/pk 80mA	ECX1911-2 2/pk 26mA
ECX1051-120	Red	\$7.25	22mm monoblock incandescent indicator light, 120VDC/VAC	ECX1904-5 5/pk 20mA	ECX1921-2 2/pk 5mA
ECX1052-24	Green	\$6.00	22mm monoblock incandescent indicator light, 24VDC/VAC	ECX1902-5 5/pk 80mA	ECX1912-2 2/pk 26mA
ECX1052-120	Green	\$7.25	22mm monoblock incandescent indicator light, 120VDC/VAC	ECX1904-5 5/pk 20mA	ECX1922-2 2/pk 5mA
ECX1053-24	Yellow	\$6.00	22mm monoblock incandescent indicator light, 24VDC/VAC	ECX1902-5 5/pk 80mA	ECX1913-2 2/pk 26mA
ECX1053-120	Yellow	\$7.25	22mm monoblock incandescent indicator light, 120VDC/VAC	ECX1904-5 5/pk 20mA	ECX1923-2 2/pk 5mA
ECX1054-24	Blue	\$6.00	22mm monoblock incandescent indicator light, 24VDC/VAC	ECX1902-5 5/pk 80mA	ECX1914-2 2/pk 26mA
ECX1054-120	Blue	\$7.25	22mm monoblock incandescent indicator light, 120VDC/VAC	ECX1904-5 5/pk 20mA	ECX1924-2 2/pk 5mA
ECX1055-24	Clear	\$6.00	22mm monoblock incandescent indicator light, 24VDC/VAC	ECX1902-5 5/pk 80mA	ECX1915-2 2/pk 26mA
ECX1055-120	Clear	\$7.25	22mm monoblock incandescent indicator light, 120VDC/VAC	ECX1904-5 5/pk 20mA	ECX1925-2 2/pk 5mA
ECX1056-24	White	\$6.00	22mm monoblock incandescent indicator light, 24VDC/VAC	ECX1902-5 5/pk 80mA	ECX1915-2 2/pk 26mA
ECX1056-120	White	\$7.25	22mm monoblock incandescent indicator light, 120VDC/VAC	ECX1904-5 5/pk 20mA	ECX1925-2 2/pk 5mA

Dimensions: mm [inches]

Plastic LED indicator lights

10 models available:

- Available in five colors
- 24V and 120V models
- Non-replaceable LEDs
- Side wire entry with back screw terminals for easy wiring and maintenance
- IP20 rated before installation
- IP65 rated after installation
- 16mA @ 127V, 18mA @ 24V

Part Number	Lamp Color	Price	Description
ECX2051-24L	Red	\$5.50	22mm non-metal monoblock LED indicator light, 24VDC/VAC
ECX2051-127L	Red	\$6.75	22mm non-metal monoblock LED indicator light, 120VDC/VAC
ECX2052-24L	Green	\$5.50	22mm non-metal monoblook LED indicator light, 24VDC/VAC
ECX2052-127L	Green	\$6.75	22mm non-metal monoblock LED indicator light, 120VDC/VAC
ECX2053-24L	Yellow	\$5.50	22mm non-metal monoblock LED indicator light, 24VDC/VAC
ECX2053-127L	Yellow	\$6.75	22mm non-metal monoblock LED indicator light, 120VDC/VAC
ECX2054-24L	Blue	\$9.25	22mm non-metal monoblock LED indicator light, 24VDC/VAC
ECX2054-127L	Blue	\$9.25	22mm non-metal monoblook LED indicator light, 120VDC/VAC
ECX2055-24L	Clear	\$9.25	22mm non-metal monoblock LED indicator light, 24VDC/VAC
ECX2055-127L	Clear	\$9.25	22mm non-metal monoblock LED indicator light, 120VDC/VAC

For accessories, see 22mm Plastic Pilot Device Accessories in this section.

www.automationdirect.com

Pilot Devices tPIL-18

Terminal Block & Accessories

For the latest prices, please check AutomationDirect.com.

Single-Level Terminal Blocks

- Screw connection terminal
- UL E179129 (For copper wire only. One conductor in terminal only.)
- VDE (IEC 60947-7-1)
- CE (EN 60947-7-1)
- * For 600V application see UL online file usage Group D

	Colors	Part Number	Qty.	Price	Part Number	Qty.	Price	Part Number	Qty.	Price
	Crow	KN-T12GRY	100	\$23.50	KN-T10GRY	100	\$27.00	KN-T8GRY	100	\$53.00
	Gray	KN-T12GRY-25	25	\$6.75	KN-T10GRY-25	25	\$7.25	KN-T8GRY-25	25	\$15.00
	Dius	KN-T12BLU	100	\$23.50	KN-T10BLU	100	\$27.00	KN-T8BLU	100	\$53.00
	Dine	KN-T12BLU-25	25	\$6.75	KN-T10BLU-25	25	\$7.25	KN-T8BLU-25	25	\$15.00
	Drown	KN-T12BRN	100	\$23.50	KN-T10BRN	100	\$27.00	KN-T8BRN	100	\$53.00
	DIUWII	KN-T12BRN-25	25	\$6.75	KN-T10BRN-25	25	\$7.25	KN-T8BRN-25	25	\$15.00
	Dlack	KN-T12BLK	100	\$23.50	KN-T10BLK	100	\$27.00	KN-T8BLK	100	\$53.00
	DIACK	KN-T12BLK-25	25	\$6.75	KN-T10BLK-25	25	\$7.25	KN-T8BLK-25	25	\$15.00
	Croon	KN-T12GRN	100	\$23.50	KN-T10GRN	100	\$27.00	KN-T8GRN	100	\$53.00
	Gieen	KN-T12GRN-25	25	\$6.75	KN-T10GRN-25	25	\$7.25	KN-T8GRN-25	25	\$15.00
	Orango	KN-T12ORG	100	\$23.50	KN-T100RG	100	\$27.00	KN-T8ORG	100	\$53.00
	Utaliye	KN-T120RG-25	25	\$6.75	KN-T100RG-25	25	\$7.25	KN-T80RG-25	25	\$15.00
	Rod	KN-T12RED	100	\$23.50	KN-T10RED	100	\$27.00	KN-T8RED	100	\$53.00
	neu	KN-T12RED-25	25	\$6.75	KN-T10RED-25	25	\$7.25	KN-T8RED-25	25	\$15.00
	Vollow	KN-T12YEL	100	\$23.50	KN-T10YEL	100	\$27.00	KN-T8YEL	100	\$53.00
	Tentow	KN-T12YEL-25	25	\$6.75	KN-T10YEL-25	25	\$7.25	KN-T8YEL-25	25	\$15.00
,	White	KN-T12WHT	100	\$23.50	KN-T10WHT	100	\$27.00	KN-T8WHT	100	\$53.00
-	winte	KN-T12WHT-25	25	\$6.75	KN-T10WHT-25	25	\$7.25	KN-T8WHT-25	25	\$15.00

Ordering Information

See our website: www.AutomationDirect.com for complete engineering drawings

			lechnical S	pecifications					
Model	KN-T12			KN-T10			KN-T8		
Width	5mm [0.20 in]			6mm [0.24 in]			8mm [0.31 in]		
Stripping Length	10mm [0.39 in]			10r	nm [0.39 in]		12	mm [0.47 in]	
Tightening Torque	0.4	0.4 N-m [3.5 lb-in]			I.m [4.4 lb.in]	0.8 N·m [7.1 lb·in]		
Density	200/m [60 pcs/ft]			166/m [50 pcs/ft]			125/m [38 pcs/ft]		
UL/CSA Approval	600V	20A	26-12 AWG	*300V	30A	26-10 AWG	*300V	50A	26-8 AWG
VDE Approval	750V	24A	2.5 mm ²	750V	32A	4mm ²	630V	41A	6mm ²
CE Conformity	750V	24A	2.5 mm ²	750V	32A	4mm ²	630V	41A	6mm ²
SCCR Rating		100kA		100kA 100kA					
Operating Temperature	Ambient air	temperature: -6	7°F to 185°F [-5	[-55°C to 85°C], Relative humidity: 50% max at 104°F [40°C] and 90% max at 68°F [20				F [20°C]	
Material			Current Bar: Co	pper Alloy / Housing	: Polyamide	66 / Screw: Zind	c Plated Steel		
DIN Rail Width					35mm				

				Acce	ssories					
	Crew	KN-ECT6GRY	100/pkg	\$17.50	KN-ECT6GRY	100/pkg	\$17.50	KN-ECT6GRY	100/pkg	\$17.50
	Gray	KN-ECT6GRY-25	25/pkg	\$4.00	KN-ECT6GRY-25	25/pkg	\$4.00	KN-ECT6GRY-25	25/pkg	\$4.00
	Blue	KN-ECT6BLU			KN-ECT6BLU			KN-ECT6BLU		
	Brown	KN-ECT6BRN			KN-ECT6BRN]		KN-ECT6BRN]	
End Covers	Black	KN-ECT6BLK			KN-ECT6BLK			KN-ECT6BLK		
(International colors)	Green	KN-ECT6GRN	10/pkg	\$2.00	KN-ECT6GRN	10/oka	\$2.00	KN-ECT6GRN	10/pkg	\$2.00
	Orange	KN-ECT6ORG	то/рку	\$2.00	KN-ECT60RG	TO/pkg	\$2.00	KN-ECT6ORG	тоурку	\$2.00
	Red	KN-ECT6RED			KN-ECT6RED]		KN-ECT6RED]	
Yellow		KN-ECT6YEL			KN-ECT6YEL]		KN-ECT6YEL]	
	White	KN-ECT6WHT			KN-ECT6WHT			KN-ECT6WHT		
	Gray	KN-ST1GRY	25/pkg	\$8.25	KN-ST1GRY	25/pkg	\$8.25	KN-ST1GRY	25/pkg	\$8.25
	Blue	KN-ST1BLU			KN-ST1BLU			KN-ST1BLU		
	Brown	KN-ST1BRN			KN-ST1BRN			KN-ST1BRN		
Concentary	Black	KN-ST1BLK			KN-ST1BLK			KN-ST1BLK		
(International colors)	Green	KN-ST1GRN	10/nkg	\$3.00	KN-ST1GRN	10/pkg	\$3.00	KN-ST1GRN	10/nkg	\$3.00
(International colors)	Orange	KN-ST10RG	TO/pkg	\$5.00	KN-ST10RG	Torpag	40.00	KN-ST10RG	Tothed	00.00
	Red	KN-ST1RED			KN-ST1RED			KN-ST1RED		
	Yellow	KN-ST1YEL			KN-ST1YEL			KN-ST1YEL		
	White	KN-ST1WHT			KN-ST1WHT	·		KN-ST1WHT		
	2-pole	KN-2J12	25/pkg	\$8.25	KN-2J10	25/pkg	\$11.50	KN-2J8	25/pkg	\$12.00
lumnere	3-pole	KN-3J12	20/pkg	\$10.00	KN-3J10	20/pkg	\$14.00	KN-3J8	20/pkg	\$15.00
Jumpers	4-pole	KN-4J12	15/pkg	\$12.00	KN-4J10	15/pkg	\$14.00	KN-4J8	15/pkg	\$14.50
	10-pole	KN-10J12	5/pkg	\$8.25	KN-10J10	5/pkg	\$10.00	KN-10J8	5/pkg	\$11.50
Comb-type jumpe	er/2-pole	KN-2JCC12	25/pkg	\$11.00	KN-2JCC10	25/pkg	\$21.50	KN-2JCC8	25/pkg	\$22.50
Top Cov	Top Cover / Blank		25/pkg	\$6.75	KN-TC-1	25/pkg	\$6.75	KN-TC-1	25/pkg	\$6.75
Top Cover	/ Symbol	KN-TC-1S	25/pkg	\$9.25	KN-TC-1S	25/pkg	\$9.25	KN-TC-1S	25/pkg	\$9.25
Marking Tags		KN-L5	Series		KN-L5 S	Series		KN-L5 / KN-L	6P5 Ser	ies

For the latest prices, please check AutomationDirect.com.

KONNECT-IT® Accessories

Multi-Pole Jumper Bars

Multi-pole jumper bars provide terminal block connection flexibility. Screw-down connection jumpers feature all-metal construction and can be installed quickly just by tightening the screws. Screwless comb-style jumpers are also available. See next page for the larger J1/0 jumper installation instructions.

Note: Screwless Comb-Style jumpers are designed to be connected under the conductor clamp.

www.automationdirect.com

Terminal Blocks tTBL-26

For the latest prices, please check AutomationUlrect.com.

Konnect-It® Accessories

End Brackets

End brackets prevent terminal blocks and other DIN rail mount components and devices from moving laterally on the rail. They are constructed from polyamide 66 and available in configurations for 35mm and 15mm DIN rails.

End Covers

End covers are used to cover the open side of sectional DIN rail mount terminal blocks. They should be used at the end of an assembly of identical terminal blocks or whenever there is a change in the physical size of the terminal block. Material: Polyamide 66

				nd Co	vers Or	dering informati	on				
Part Num ber	Color	Dimensions HxLxW mm [in]	Suitable for	Pcs/ Pkg	Price	Part Number	Color	Dimensions HxLxW mm[in]	Suitable for	Pcs⁄ Pkg	Price
KN-ECT6GRY	gray			100	\$17.50	KN-ECDORG	orange		101 010		
KN-ECT6GRY-25	gray]		25	\$4.00	KN-ECDRED	red	48.2x63.2x1.3 [1.90x2.49x0.05]	KN-D10 KN-D12	10	\$4.00
KN-ECT6BLU	blue					KN-ECDYEL	yellow				
KN-ECT6BLK	black					KN-ECTL	gray	54.7x87.1x1.3 [2.15x3.43x0.05]	KN-TL14	10	\$2.50
KN-ECT6BRN	brown	34.0x42.7x1.3	KN-T12 KN-T10			KN-ECTLS	gray	54.7x72.8x1.2 [2.15x2.87x0.05]	KN-TL14S	10	\$3.00
KN-ECT6GRN	green	[1.34x1.68x0.05]	KN-T8 KN-T6	10	\$2.00	KN-ECDG12	gray	48.0x71.4x1.2 [1.89x2.81x0.05]	KN-DG12	10	\$3.00
KN-ECT6ORG	orange					KN-ECTG12	gray	62.5x87.5x1.2 [2.46x3.44x0.05]	KN-TG12	10	\$3.00
KN-ECT6RED	ben]				KN-ECMGRY	gray			100	\$37.50
KN-ECT6WHT	white]				KN-ECMGRY-10	gray	28.1x27.0x3.0 [1.11x1.06x0.12]	KN-M12 KN-M10	10	\$4.00
KN-ECT6YEL	yellow					KN-ECMBLU	blue			10	\$4.00
KN-ECT4GRY	gray	45.7x52.8x1.2	KN-TA	25	\$8.25	KN-ECMGRN	green/yellow	28.1x27.0x3.0 [1.11x1.06x0.12]	KN-MG12 KN-MG10	10	\$4.00
KN-ECT4BLU	blue	[1.80x2.08x0.05]	101-14	10	\$3.50	KN-ECG12SP4	green/yellow	39.7x57.1x1.2 [1.56x2.25x0.05]	KN-G12SP4	10	\$3.00
KN-ECDGRY	gray			25	\$8.75	KN-ECT12SP4	gray	39.7x57.1x1.2 [1.56x2.25x0.05]	KN-T12SP4	25	\$7.75
KN-ECDBLU	blue	48.2x63.2x1.3	KN-D10			KN-ECF10	gray	27.3x59.6x1.2 [1.07x2.35x0.05]	KN-F10	25	\$9.75
KN-ECDBLK	black	[1.90x2.49x0.05]	KN-D12	10	\$4.00	KN-ECKBD	gray	37.1x53.5x1.2 [1.46x2.11x0.05]	KN-KDB10	10	\$4.00
KN-ECDGRN	green										

www.automationdirect.com

Terminal Blocks tTBL-28

For the latest prices, please check AutomationDirect.com.

KONNECT-IT

KONNECT-IT[®] Accessories Separators

Separators are used to segment banks of terminal blocks. Allows you to maintain a single row of terminal blocks, but have separate power source clusters.

	3	Separators	Ordering I	nformation	i		
Part Number	Color	Works	Dime	Pcs/	Price		
Fait Number	COIDI	With	Height	Length	Thickness	Pkg	FILE
KN-ST1GRY	Gray					25	\$8.25
KN-ST1BLU	Blue						
KN-ST1BLK	Black]					
KN-ST1BRN	Brown	KN-T12					
KN-ST1GRN	Green	KN-T10 KN-TR	39.0 [1.54]	42.5 [1.67]	1.2 [0.05]	10	#2.00
KN-ST10RG	Orange	KN-T6					\$2,00
KN-ST1RED	Red]					
KN-ST1WHT	White]					
KN-ST1YEL	Yellow						
KN-ST2GRY	Gray	KNL TA	CO C 12 071	10011001	1.5 (0.001	25	\$11.00
KN-ST2BLU	Blue	NIT*14	52.5 [2.07]	50.5 [1.99]	1.5 [0.06]		\$11.00
KN-ST3GRY	Gray	KN T2	C2 C 12 AC1	£2 1 (2 00)	1.5 (0.001	10	\$5.50
KN-ST3BLU	Blue	NN-12	62.6 [2.46]	53.1 [2.09]	1.5 [0.06]		\$5.50

Top Covers and Label Holders

	Top Covers and Label Holders O	rdering l	nformati	on			
Part Number	Description	Works With	Dime Height	nsions - n Length	nm [in] Width	Pcs/ Pkg	Price
KN-TC-1	Top cover for Konnect-It terminal block, blank, white	KN-T12 KN-T10	6 9 10 271	20.0 (1.14)	E 0 10 221	25	\$6.75
KN-TC-1S	Top cover for Konnect-It terminal block, printed electric symbol, white	KN-T8 KN-T6	0.0[0.27]	28.0[1.14]	5.6[0.23]	25	\$9.25
KN-TC-2	Top cover for Konnect-It terminal block, blank, white	KN-T4	7.0 10 001		0.010.001	25	\$17.00
KN-TC-2S	Top cover for Konnect-It terminal block, printed electric symbol, white	KN-T2	1.3[0.29]	35.8[1.41]	ar0[0:32]	25	\$17.00
KN-MA-1	Label holder for terminal block group. Label media not included.	VALCO A	40.011.001	40.011.011	11 4 10 401	25	\$14.00
KN-MA-1-10	Max label dimensions: 7 x 44 mm (0.28 x 1.73 in).	NN-CD4	40.2 [1.82]	46.0[1.61]	11.4 [0.45]	10	\$6.75
KN-MA-2	Label holder for terminal block group. Label media not included.	101 007	07.5.14.400	10.011.001	0.5 (0.07)	50	\$36.50
KN-MA-2-10	Max label dimensions: 7 x 44 mm (0.28 x 1.73 in).	NN-EB/	37.5 [1.48]	46.2 [1.82]	ap[031]	10	\$8.25
KN-MA-3	Top mounting marking tag adapter for terminal block. Holds up to (4) L5x5 tags	KN-T4 KN-T2	9.3 [0.36]	36.0 [1.42]	9.0 [0.35]	25	\$9.25
KN-MA-4	Top mounting marking tag adapter for terminal block. Holds up to (4) LSx5 tags	KN-T12 KN-T10 KN-T8 KN-T6	9.0 [0.35]	29.0 [1.14]	5.7 [0.22]	25	\$8.25
KN-MA-5	Label holder for terminal block group. Label media included.	Attaches				50	\$29.50
KN-MA-5-25	Max label dimensions: 10 x 38mm (0.39 x 1.50 in). Thickness 0.30 mm (0.01 in)	35mm DIN rail	46.4 [1.83]	44.5 [1.75]	10.0 [0.39]	25	\$18.00

KN-MA-1

KN-TC-1/KN-TC-2

www.automationdirect.com

Terminal Blocks tTBL-29

58

Appendix H: Marking Sheets

ELTE1035 Senior Pro	oject 1: Drawing and Parts List – Wiring diagram	
Student: BHAUSA	R. ROHAN Report title: DUAL Sum	PURP CONTR.
Staff advisor: R. BP	Date marked: 2021.04,13	
Assessed item	Instructions: Assign mark based on these guidelines.	Notes / explanation / page number
Format:	Drawing: Assess out of 10 based on:	Pitis blockie
Drawing: (10)	TitleTitle all caps	Iria in place
Parts list: 7(5)	VersionDate of last revision	white checand
	Filename Page number (x of y)	we'll - opena
	Scale/page size Name (drawn by)	does not have
	Not too sparse/small/bigNot to crowded	thout
	Not grey scale Multiple page if and only if needed	meaning
	Parts list: Assess a mark out of 5 based on:	colour - Kevise.
	✓ Use of standard template ✓ Landscape	
	Project title	
	RevisionDate	2
Complexity: $4(5)$	Wiring diagrams: Assess a mark out of 5 by estimating number of	D) Scandis
	components, wires, specification notes, wire type and length, etc.	L. Jerus.
	Custom drawn symbols count double or triple if done well.	le le le
	5 – Over 50, Above average complexity	Strain relet
	4 – About 40, good, complex project	11000
	1-2 – A very simplistic wiring diagram	
Completences	Denvires Assess a mark aut of 5 based on completeness	
Drawing: 5(5)	E No missing components parts wiring connectors	Archinger
Parts list: 3 (5)	3-4 – Missing components, parts, wiring, connectors	AI MEET
	3 – Missing connection to nower source. Or computer etc.	(uld)
	1-2 - Needs a lot of work	are and the
	Parts list: Assess a mark out of 5 based on completeness	7
	5 – All parts on project represented on parts list, plus other req.	Kenore.
	3-4 A few less obvious omissions such as laptop, usb cable	
	3 – Missing major parts – power supply, enclosure etc.	Contrator - Spelling
	1-2 – Parts list need a lot of work	Conductor
Correctness to	Wiring diagrams: Assess a mark out of 10 based on the following:	
standards	Comp./parts have reference designators	Indicak Wing
Drawing: (10)	Comp./parts have terminals identified	The dec .
Parts list: 4 (5)	Oriented towards connecting / how to hook up	Orange warny
	Wire color Wire type Wire gauge	
	Grounding issues addressed chassis	nate
	Custom parts drawn web Standard symbols	1012
	-Notes LP2C-upside-down	
	Other	11, 60 + 28
	Parts list: Assess a mark out of 5 based on correctness	17 plaser
	All caps	
	Part numbers	
Other: 5(5)	Otheritems	
	Marked multiple times with steady improvement	
	Well thought out custom parts and components	
	Independent work Self taught drawing package features	
	Other	
Total: 20 (Out of 100)	Total is sum of all items	
7 50		

Instructor notes: Write explanatory notes on this page for ease of CTAB auditors who may not have access to marked up copies of remitted student work. Half marks are alrowed. Assign a mark of 0 for any missing item. Make 2 copies: Original to staff advisor. Copy 1 to student. Copy 2 to SPL coordinating instructor for CTAB auditing purposes.

ver 1.0 Feb 19, 2020

ELTE1035 Senior Project 1: Project Proposal marking sheet									
Student: BLAUSar,	Rohan Project name: Samp pury	controller							
Staff advisor: <u>L. boo xy</u> Date marked: <u>2021.02.03</u>									
Assessed item	Instructions	Notes / explanation / page number							
Memo appearance	Format: One page formal memo with header, body, attach.:								
Format: 5 (5)	5-All sections present and professional looking								
Style: 5 (5)	4-Minor grammar, spelling, formatting issue								
-	3-Meets minimum requirements.								
	2,1-Missing items, not memo format, or not professional								
	0-Not initialed								
	Style								
	5-Exemplary, professional								
	4-Persuasive and communicates technical enthusiasm								
	3-rechnical sales pitch as opposed to project request								
Designed William (15)	2, 1-Huffy, non-technical language								
Project fitle: 2 (5)	F Creative, short, descriptive								
	A Descriptive of project								
	2-Communicates basis concent of project								
	2.1-Name but little or no idea what it is								
	0-Title missing								
Items:	The memo required a number of individual items								
To: From: cc: 2 (2)	2-Item present and correct								
Date: 1 (2)	1-Present but incomplete or other issue								
Re: 2- (2)	0-Not present								
Purpose of memo: (2)									
Purpose or project: ~ (2)									
Project scope: (2)									
State meet deadlines: 2(2)									
Estimated cost: 2 (2)									
Req. approval in words: 2/(2)									
Req. app. signature line: 2/(2)									
Attachments: 5 (5)	Attachments need to show some depth of research and								
	analysis about the project.								
	5-Appropriate and linked to body of memo to support the								
	project proposal.								
	4-Appropriate but not referenced well in body of memo								
	3-Support components of project but not project as a whole								
	3-Excessive, waste paper.								
	2,1-Insufficient to support project request								
Citized and the sector	U-Not present								
Critical requirements:	It is critical that the memo be initialed and remitted on time.								
On Time: 14 (Ves or No)	Ar NO Toreither results in a mark of 0 for the memo-								
Approval: (Ves or No)	Approval for the project is granted by signing the project								
Instructor initials:	proposal and also by indicating "Yes" and initialing.								
Total:	Total is out of 40								
Out of: 40									

Note to student: A mark of 0 does not mean the project is not approved. Likewise a passing mark on the project proposal does not grant approval for the project. Unapproved projects are dealt with on a case by case basis as soon as possible in the term.

Notes to instructor: Write explanatory notes on this page for ease of CTAB auditors who may not have access to marked up copies of remitted student work. Half marks are are allowed. Assign a mark of 0 for any missing hem. Make 2 copies: Original to stuff advisor. Copy 1 to student. Copy 2 to SPL coordinating instructor for CTAB auditing purposes. Enter marks in Brightspace.

Rev 2.01 Jan 15, 2018

Appendix I: Marked Drawing

NOT SPL PASTS LIST TEMPLATE

PROJECT : DUAL SUMP-PUMP CONTROLLER											
REV: 5.00 DATE: Feb. 07, 2021			DRAWN BY: ROHAN BHAVSAR				SHEET 1 d			of 1	
ITEM	REF. DESIGNATOR OR ID ON DRAWING	GTY	DESCRIPTION	MANUFACTURER	MANUFACTURER P/N	SUPPLIER	SUPPLIER P/N	ITEM COST		TOTAL COST	
1	B1	1	AUDIBLE BUZZER	AUTOMATION DIRECT	ECX2071-127R	AUTOMATION DIRECT	ECX2071-127R		9.26		9.26
2	C1	2	COTACTOR	FUJI ELECTRIC	8C-E02-110VAC	AUTOMATION DIRECT	8C-E02-110VAC		17.00		34.00
3	L1,L2	2	YELLOW LED INDICATOR	AUTOMATION DIRECT	ECX1063-120	AUTOMATION DIRECT	ECX1063-120		7.26		14.60
4	PLC	1	PLC	SIEMENSE	6E87 212-1BA01-0XB0	WORLD INDUSTRIAL AUTOMATION	6E87212-1BA01-0XB0		667.88		667.88
6	C\$1,C\$2,C\$3,C\$4	4	CURRENT SENSOR	ACUAMP	AC8160-CE-F	AUTOMATION DIRECT	AC8160-CE-F	:	67.00		268.00
	T1,T2	2	PUSH BUTTON	AUTOMATION DIRECT	OCX3184-120L	AUTOMATION DIRECT	GCX3184-120L		21.60	•	43.00
7	L3	1	GREEN LED	AUTOMATION DIRECT	ECX1062-120	AUTOMATION DIRECT	ECX1062-120		7.26	:	7.26
8	F1	1	FUSE BLOCK	BUSSMANN	RM26030-18R	AUTOMATION DIRECT	RM26030-18R		9.76		9.76
9	NA	NA	DIN RAIL	DINNECTOR	DN-R3681-2	AUTOMATION DIRECT	DN-R3681-2		10.00		10.00
10	NA	NA	TERMINAL BLOCK	KONNECT-IT	KN-T120RY-26	AUTOMATION DIRECT	KN-T120RY-26	:	8.76	:	6.76

Figure 4: Part list

Figure 3: Wiring Diagram

PROJECT : DUAL SUMP-PUMP CONTROLLER											
REV: 6	EV: 6.00 DATE: FEB. 15, 2021		DRAWN BY: ROHAN BHAVSAR					SHEE	T 1 (of 1	
ITEM	REF. DESIGNATOR OR ID ON DRAWING	QTY	DESCRIPTION	MANUFACTURER	MANUFACTURER P/N	SUPPLIER	SUPPLIER P/N	ITE	N COST	TOT	AL COST
1	B1	1	AUDIBLE BUZZER	AUTOMATION DIRECT	ECX2071-127R	AUTOMATION DIRECT	ECX2071-127R	S	9.25	\$	9.25
2	C1	2	COTACTOR 5	FUJI ELECTRIC	SC-E02-110VAC	AUTOMATION DIRECT	SC-E02-110VAC	S	17.00	\$	34.00
5	C\$1,C\$2,C\$3,C\$4	4	CURRENT SENSOR	ACUAMP	AC\$150-CE-F	AUTOMATION DIRECT	ACS150-CE-F	\$	67.00	\$	268.00
9	-	2	DIN RAIL	DINNECTOR	DN-R35S1-2	AUTOMATION DIRECT	DN-R35S1-2	s	10.00	\$	10.00
8	F1	1	FUSE BLOCK	BUSSMANN	RM25030-1SR	AUTOMATION DIRECT	RM25030-1SR	\$	9.75	\$	9.75
7	7 13	1	GREEN LED INDICATOR	AUTOMATION DIRECT	ECX1052-120	AUTOMATION DIRECT	ECX1052-120	\$	7.25	\$	7.25
4	PLC	1	PLC	SIEMENSE	6ES7 212-1BA01-0XB0	WORLD INDUSTRIAL AUTOMATION	6E\$7212-1BA01-0XB0	\$	557.88	S	557.88
6	PB1,PB2	2	PUSH BUTTON	AUTOMATION DIRECT	GCX1104	AUTOMATION DIRECT	GCX1104	\$	7.25	\$	14.50
11	PB3	1	PUSH BUTTON	AUTOMATION DIRECT	GCX1104	AUTOMATION DIRECT	GCX1104	S	7.25	\$	7.25
10	1A	3	TERMINAL BLOCK	KONNECT-IT	KN-T12GRY-25	AUTOMATION DIRECT	KN-T12GRY-25	\$	6.75	\$	20.25
3	11,12	2	YELLOW LED INDICATOR	AUTOMATION DIRECT	ECX1053-120	AUTOMATION DIRECT	ECX1053-120	S	7.25	S	14.50
12											1
13										-	
14											
15											
16											
17								<u> </u>			<u> </u>
18											
19								<u> </u>			
20								-			
21										-	<u> </u>
22								-			
20							-			- 1	
24										- 1	
26							2	-		-	
27								-		-	
28								-			
29								-			
30											
31											
32											
33											
34				1					_		
35											
36										1	
37							2				1
38										T	
39										0	
40										10	TAL

Figure 4: Part list